on the problems in "5 Inverse trig functions/5.1 Inverse sine"
Test results for the 59 problems in "5.1.2 (dx)^m (a+b arcsin(c x))^n.txt"
Problem 36: Unable to integrate problem.

$$
\int(b x)^{m} \arcsin (a x) \mathrm{d} x
$$

Optimal(type 5, 65 leaves, 2 steps):

$$
\frac{(b x)^{1+m} \arcsin (a x)}{b(1+m)}-\frac{a(b x)^{2+m} \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right], a^{2} x^{2}\right)}{b^{2}(1+m)(2+m)}
$$

Result(type 8, 12 leaves):

$$
\int(b x)^{m} \arcsin (a x) \mathrm{d} x
$$

Problem 39: Unable to integrate problem.

$$
\int x^{2} \arcsin (a x)^{n} \mathrm{~d} x
$$

Optimal(type 4, 151 leaves, 9 steps):
$-\frac{\mathrm{I} \arcsin (a x)^{n} \Gamma(1+n,-\mathrm{I} \arcsin (a x))}{8 a^{3}(-\mathrm{I} \arcsin (a x))^{n}}+\frac{\mathrm{I} \arcsin (a x)^{n} \Gamma(1+n, \mathrm{I} \arcsin (a x))}{8 a^{3}(\mathrm{I} \arcsin (a x))^{n}}+\frac{\mathrm{I} 3^{-1-n} \arcsin (a x)^{n} \Gamma(1+n,-3 \mathrm{I} \arcsin (a x))}{8 a^{3}(-\mathrm{I} \arcsin (a x))^{n}}$
$-\frac{\mathrm{I} 3^{-1-n} \arcsin (a x)^{n} \Gamma(1+n, 3 \mathrm{I} \arcsin (a x))}{a^{3}}$
$8 a^{3}(\mathrm{I} \arcsin (a x))^{n}$
Result (type 8, 12 leaves):

$$
\int x^{2} \arcsin (a x)^{n} \mathrm{~d} x
$$

Problem 40: Unable to integrate problem.

$$
\int \arcsin (a x)^{n} \mathrm{~d} x
$$

Optimal (type 4, 69 leaves, 4 steps):

$$
-\frac{\mathrm{I} \arcsin (a x)^{n} \Gamma(1+n,-\mathrm{I} \arcsin (a x))}{2 a(-\mathrm{I} \arcsin (a x))^{n}}+\frac{\mathrm{I} \arcsin (a x)^{n} \Gamma(1+n, \mathrm{I} \arcsin (a x))}{2 a(\mathrm{I} \arcsin (a x))^{n}}
$$

Result(type 9, 239 leaves):
$\frac{1}{a}\left(2^{n} \sqrt{\pi}\left(\frac{2^{-1-n} \arcsin (a x)^{n}(6+2 n) a x}{\sqrt{\pi}(1+n)(3+n)}+\frac{\arcsin (a x)^{n} 2^{-n} \sqrt{-a^{2} x^{2}+1}\left(\arcsin (a x) x^{2} a^{2}-\arcsin (a x)+a x \sqrt{-a^{2} x^{2}+1}\right)}{\sqrt{\pi}(1+n)\left(a^{2} x^{2}-1\right)}\right.\right.$

```
\(+\frac{2^{-n} \sqrt{\arcsin (a x)} n \operatorname{LommelS} 1\left(n+\frac{1}{2}, \frac{3}{2}, \arcsin (a x)\right) a x}{\sqrt{\pi}(1+n)}\)
    \(\sqrt{\pi}(1+n)\)
\(-\underline{2^{-n} \sqrt{-a^{2} x^{2}+1}\left(\arcsin (a x) x^{2} a^{2}-\arcsin (a x)+a x \sqrt{-a^{2} x^{2}+1}\right) \operatorname{LommelS} 1\left(n+\frac{3}{2}, \frac{1}{2}, \arcsin (a x)\right)}\)
\[
\sqrt{\pi}(1+n) \sqrt{\arcsin (a x)}\left(a^{2} x^{2}-1\right)
\]
```

Problem 46: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{3}}{x} \mathrm{~d} x
$$

Optimal(type 4, 152 leaves, 7 steps):
$-\frac{\mathrm{I}(a+b \arcsin (c x))^{4}}{4 b}+(a+b \arcsin (c x))^{3} \ln \left(1-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)-\frac{3 \mathrm{I} b(a+b \arcsin (c x))^{2} \operatorname{polylog}\left(2,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2}$
$+\frac{3 b^{2}(a+b \arcsin (c x)) \text { polylog }\left(3,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2}+\frac{3 \mathrm{I} b^{3} \operatorname{polylog}\left(4,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{4}$
Result(type 4, 591 leaves):
$a^{3} \ln (c x)-\frac{3 \mathrm{I} a^{2} b \arcsin (c x)^{2}}{2}+b^{3} \arcsin (c x)^{3} \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)-3 \mathrm{I} b^{3} \arcsin (c x)^{2} \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)$
$+6 b^{3} \arcsin (c x)$ polylog $\left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-3 \mathrm{I} b^{3} \arcsin (c x)^{2} \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+b^{3} \arcsin (c x)^{3} \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)$
$-3 \mathrm{I} a^{2} b \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)+6 b^{3} \arcsin (c x) \operatorname{polylog}\left(3,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)-\mathrm{I} a b^{2} \arcsin (c x)^{3}-3 \mathrm{I} a^{2} b$ polylog $(2, \mathrm{I} c x$
$\left.+\sqrt{-c^{2} x^{2}+1}\right)+6 \mathrm{I} b^{3}$ polylog$\left(4,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)+6 \mathrm{I} b^{3} \operatorname{polylog}\left(4, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+3 a b^{2} \arcsin (c x)^{2} \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)$
$+3 a b^{2} \arcsin (c x)^{2} \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+6 a b^{2} \operatorname{polylog}\left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+6 a b^{2} \operatorname{polylog}\left(3,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)$
$-6 \mathrm{I} a b^{2} \arcsin (c x) \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)+3 a^{2} b \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+3 a^{2} b \arcsin (c x) \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)$
$-\frac{\mathrm{I} b^{3} \arcsin (c x)^{4}}{4}-6 \mathrm{I} a b^{2} \arcsin (c x) \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)$

Problem 52: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(a+b \arcsin (c x))^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 129 leaves, 8 steps):
$-\frac{4 \cos \left(\frac{a}{b}\right) \text { FresnelC }\left(\frac{\sqrt{2} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{b}}\right) \sqrt{2} \sqrt{\pi}}{3 b^{5 / 2} c}-\frac{4 \text { FresnelS }\left(\frac{\sqrt{2} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{b}}\right) \sin \left(\frac{a}{b}\right) \sqrt{2} \sqrt{\pi}}{3 b^{5 / 2} c}-\frac{2 \sqrt{-c^{2} x^{2}+1}}{3 b c(a+b \arcsin (c x))^{3 / 2}}$
$+\frac{4 x}{3 b^{2} \sqrt{a+b \arcsin (c x)}}$
Result(type 4, 324 leaves):

$$
\begin{aligned}
& \frac{1}{3 c b^{2}(a+b \arcsin (c x))^{3 / 2}}\left(2 \left(-2 \arcsin (c x) \sqrt{\pi} \sqrt{a+b \arcsin (c x)} \sqrt{2} \sqrt{\frac{1}{b}} \operatorname{FresnelC}\left(\frac{\sqrt{2} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \cos \left(\frac{a}{b}\right) b\right.\right. \\
& -2 \arcsin (c x) \sqrt{\pi} \sqrt{a+b \arcsin (c x)} \sqrt{2} \sqrt{\frac{1}{b}} \operatorname{FresnelS}\left(\frac{\sqrt{2} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sin \left(\frac{a}{b}\right) b \\
& -2 \sqrt{\pi} \sqrt{a+b \arcsin (c x)} \sqrt{2} \sqrt{\frac{1}{b}} \operatorname{FresnelC}\left(\frac{\sqrt{2} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \cos \left(\frac{a}{b}\right) a \\
& -2 \sqrt{\pi} \sqrt{a+b \arcsin (c x)} \sqrt{2} \sqrt{\frac{1}{b}} \operatorname{FresnelS}\left(\frac{\sqrt{2} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sin \left(\frac{a}{b}\right) a+2 \arcsin (c x) \sin \left(\frac{a+b \arcsin (c x)}{b}-\frac{a}{b}\right) b \\
& \left.\left.-\cos \left(\frac{a+b \arcsin (c x)}{b}-\frac{a}{b}\right) b+2 \sin \left(\frac{a+b \arcsin (c x)}{b}-\frac{a}{b}\right) a\right)\right)
\end{aligned}
$$

Test results for the 193 problems in "5.1.4 (f x) ^m (d+e $\left.x^{\wedge} 2\right)^{\wedge} p(a+b \arcsin (c x))^{\wedge} n . t x t "$ Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \arcsin (c x)}{x^{3}\left(-c^{2} d x^{2}+d\right)} \mathrm{d} x
$$

Optimal(type 4, 145 leaves, 9 steps):

$$
\begin{aligned}
& \frac{-a-b \arcsin (c x)}{2 d x^{2}}-\frac{2 c^{2}(a+b \arcsin (c x)) \operatorname{arctanh}\left(\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d}+\frac{\mathrm{I} b c^{2} \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d} \\
& -\frac{\mathrm{I} b c^{2} \operatorname{polylog}\left(2,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d}-\frac{b c \sqrt{-c^{2} x^{2}+1}}{2 d x}
\end{aligned}
$$

Result(type 4, 295 leaves):

$$
\begin{array}{r}
-\frac{c^{2} a \ln (c x+1)}{2 d}-\frac{a}{2 d x^{2}}+\frac{c^{2} a \ln (c x)}{d}-\frac{c^{2} a \ln (c x-1)}{2 d}+\frac{\mathrm{I} c^{2} b}{2 d}-\frac{b c \sqrt{-c^{2} x^{2}+1}}{2 d x}-\frac{b \arcsin (c x)}{2 d x^{2}}+\frac{c^{2} b \arcsin (c x) \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d} \\
-\frac{\mathrm{I} c^{2} b \operatorname{poly} \log \left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d}+\frac{c^{2} b \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d}-\frac{\mathrm{I} c^{2} b \operatorname{poly} \log \left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d}
\end{array}
$$

$-\frac{c^{2} b \arcsin (c x) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d}+\frac{\mathrm{I} b c^{2} \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d}$

Problem 16: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3}(a+b \arcsin (c x))}{\left(-c^{2} d x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 88 leaves, 4 steps):

$$
-\frac{b x^{3}}{12 c d^{3}\left(-c^{2} x^{2}+1\right)^{3 / 2}}-\frac{b \arcsin (c x)}{4 c^{4} d^{3}}+\frac{x^{4}(a+b \arcsin (c x))}{4 d^{3}\left(-c^{2} x^{2}+1\right)^{2}}+\frac{b x}{4 c^{3} d^{3} \sqrt{-c^{2} x^{2}+1}}
$$

Result(type 3, 211 leaves):

$$
\begin{aligned}
& \frac{1}{c^{4}}\left(-\frac{a\left(-\frac{1}{16(c x+1)^{2}}+\frac{3}{16(c x+1)}-\frac{1}{16(c x-1)^{2}}-\frac{3}{16(c x-1)}\right)}{d^{3}}-\frac{1}{d^{3}}\left(b \left(-\frac{\arcsin (c x)}{16(c x+1)^{2}}+\frac{3 \arcsin (c x)}{16(c x+1)}-\frac{\arcsin (c x)}{16(c x-1)^{2}}-\frac{3 \arcsin (c x)}{16(c x-1)}\right.\right.\right. \\
& \left.\left.\quad+\frac{\sqrt{-(c x-1)^{2}-2 c x+2}}{48(c x-1)^{2}}+\frac{\sqrt{-(c x-1)^{2}-2 c x+2}}{6(c x-1)}-\frac{\sqrt{-(c x+1)^{2}+2 c x+2}}{48(c x+1)^{2}}+\frac{\sqrt{-(c x+1)^{2}+2 c x+2}}{6(c x+1)}\right)\right)
\end{aligned}
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \frac{x(a+b \arcsin (c x))}{\left(-c^{2} d x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 73 leaves, 3 steps):

$$
-\frac{b x}{12 c d^{3}\left(-c^{2} x^{2}+1\right)^{3 / 2}}+\frac{a+b \arcsin (c x)}{4 c^{2} d^{3}\left(-c^{2} x^{2}+1\right)^{2}}-\frac{b x}{6 c d^{3} \sqrt{-c^{2} x^{2}+1}}
$$

Result(type 3, 150 leaves):
$\frac{1}{c^{2}}\left(\frac{a}{4 d^{3}\left(c^{2} x^{2}-1\right)^{2}}\right.$
$\left.-\frac{b\left(-\frac{\arcsin (c x)}{4\left(c^{2} x^{2}-1\right)^{2}}+\frac{\sqrt{-(c x-1)^{2}-2 c x+2}}{48(c x-1)^{2}}-\frac{\sqrt{-(c x-1)^{2}-2 c x+2}}{12(c x-1)}-\frac{\sqrt{-(c x+1)^{2}+2 c x+2}}{48(c x+1)^{2}}-\frac{\sqrt{-(c x+1)^{2}+2 c x+2}}{12(c x+1)}\right)}{d^{3}}\right)$

[^0]$$
\int x^{2} \sqrt{-c^{2} d x^{2}+d}(a+b \arcsin (c x)) \mathrm{d} x
$$

Optimal(type 3, 163 leaves, 5 steps):

$$
-\frac{x(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{8 c^{2}}+\frac{x^{3}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{4}+\frac{b x^{2} \sqrt{-c^{2} d x^{2}+d}}{16 c \sqrt{-c^{2} x^{2}+1}}-\frac{b c x^{4} \sqrt{-c^{2} d x^{2}+d}}{16 \sqrt{-c^{2} x^{2}+1}}
$$

$$
+\frac{(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{16 b c^{3} \sqrt{-c^{2} x^{2}+1}}
$$

Result(type 3, 372 leaves):

$$
\begin{aligned}
& -\frac{a x\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{4 c^{2} d}+\frac{a x \sqrt{-c^{2} d x^{2}+d}}{8 c^{2}}+\frac{a d \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{8 c^{2} \sqrt{c^{2} d}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{2}}{16 c^{3}\left(c^{2} x^{2}-1\right)} \\
& \quad+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \arcsin (c x) x^{5}}{4\left(c^{2} x^{2}-1\right)}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x^{3}}{8\left(c^{2} x^{2}-1\right)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1}}{128 c^{3}\left(c^{2} x^{2}-1\right)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x}{8 c^{2}\left(c^{2} x^{2}-1\right)} \\
& \quad+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} c \sqrt{-c^{2} x^{2}+1} x^{4}}{16\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} x^{2}}{16 c\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{-c^{2} d x^{2}+d}(a+b \arcsin (c x))}{x^{4}} d x
$$

Optimal(type 3, 95 leaves, 3 steps):

$$
-\frac{\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))}{3 d x^{3}}-\frac{b c \sqrt{-c^{2} d x^{2}+d}}{6 x^{2} \sqrt{-c^{2} x^{2}+1}}-\frac{b c^{3} \ln (x) \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{-c^{2} x^{2}+1}}
$$

Result(type 3, 1116 leaves):

$$
\begin{aligned}
& -\frac{a\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{3 d x^{3}}-\frac{2 \mathrm{I} b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) c^{3}}{3 c^{2} x^{2}-3}+\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3} c^{6}}{3\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)}-\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)}}{6\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)} \\
& \quad+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{5} \arcsin (c x) c^{8}}{\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)}-\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x c^{4}}{6\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)}-\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{5} c^{8}}{6\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)} \\
& \\
& -\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} c^{5}}{\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3} \arcsin (c x) c^{6}}{\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)}+\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x\left(-c^{2} x^{2}+1\right) c^{4}}{6\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)} \\
& \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{2} \sqrt{-c^{2} x^{2}+1} c^{5}}{2\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)}+\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{4} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} c^{7}}{\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)}+\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} c^{3}}{3\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{10 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x \arcsin (c x) c^{4}}{3\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c^{3}}{2\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right)\left(c^{2} x^{2}-1\right)}-\frac{5 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) c^{2}}{3\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right) x\left(c^{2} x^{2}-1\right)} \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c}{6\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right) x^{2}\left(c^{2} x^{2}-1\right)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{3\left(3 c^{4} x^{4}-3 c^{2} x^{2}+1\right) x^{3}\left(c^{2} x^{2}-1\right)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \ln \left(\left(\operatorname{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}-1\right) c^{3}}{3\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 20: Result more than twice size of optimal antiderivative.

$$
\int x \sqrt{-c^{2} d x^{2}+d}(a+b \arcsin (c x)) \mathrm{d} x
$$

Optimal(type 3, 94 leaves, 2 steps):

$$
-\frac{\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))}{3 c^{2} d}+\frac{b x \sqrt{-c^{2} d x^{2}+d}}{3 c \sqrt{-c^{2} x^{2}+1}}-\frac{b c x^{3} \sqrt{-c^{2} d x^{2}+d}}{9 \sqrt{-c^{2} x^{2}+1}}
$$

Result(type 3, 342 leaves):

$$
\begin{aligned}
& -\frac{a\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{3 c^{2} d}+b\left(\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 c^{4} x^{4}-5 c^{2} x^{2}-4 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+3 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+1\right)(\mathrm{I}+3 \arcsin (c x))}{72 c^{2}\left(c^{2} x^{2}-1\right)}\right. \\
& \quad-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(c^{2} x^{2}-\mathrm{I} c x \sqrt{-c^{2} x^{2}+1}-1\right)(\arcsin (c x)+\mathrm{I})}{8 c^{2}\left(c^{2} x^{2}-1\right)}-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+c^{2} x^{2}-1\right)(\arcsin (c x)-\mathrm{I})}{8 c^{2}\left(c^{2} x^{2}-1\right)} \\
& \left.\quad+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+4 c^{4} x^{4}-3 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c-5 c^{2} x^{2}+1\right)(-\mathrm{I}+3 \arcsin (c x))}{72 c^{2}\left(c^{2} x^{2}-1\right)}\right)
\end{aligned}
$$

Problem 22: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{-c^{2} d x^{2}+d}(a+b \arcsin (c x))}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 221 leaves, 8 steps):

$$
\begin{aligned}
& -\frac{(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{2 x^{2}}-\frac{b c \sqrt{-c^{2} d x^{2}+d}}{2 x \sqrt{-c^{2} x^{2}+1}}+\frac{c^{2}(a+b \arcsin (c x)) \operatorname{arctanh}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{-c^{2} x^{2}+1}} \\
& -\frac{\mathrm{I} b c^{2} \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} d x^{2}+d}}{2 \sqrt{-c^{2} x^{2}+1}}+\frac{\mathrm{I} b c^{2} \operatorname{poly} \log \left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} d x^{2}+d}}{2 \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type 4, 461 leaves):
$-\frac{a\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{2 d x^{2}}+\frac{a \sqrt{d} \ln \left(\frac{2 d+2 \sqrt{d} \sqrt{-c^{2} d x^{2}+d}}{x}\right) c^{2}}{2}-\frac{a \sqrt{-c^{2} d x^{2}+d} c^{2}}{2}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) c^{2}}{2\left(c^{2} x^{2}-1\right)}$

$$
\begin{aligned}
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c}{2\left(c^{2} x^{2}-1\right) x}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{2\left(c^{2} x^{2}-1\right) x^{2}}-\frac{b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{2 c^{2} x^{2}-2} \\
& +\frac{b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \arcsin (c x) \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{2 c^{2} x^{2}-2}-\frac{\mathrm{I} b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{2 c^{2} x^{2}-2} \\
& +\frac{\mathrm{I} b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \text { polylog }\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{2 c^{2} x^{2}-2}
\end{aligned}
$$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x)) \mathrm{d} x
$$

Optimal(type 3, 162 leaves, 6 steps):

$$
\begin{aligned}
& \frac{x\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))}{4}+\frac{3 d x(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{8}-\frac{5 b c d x^{2} \sqrt{-c^{2} d x^{2}+d}}{16 \sqrt{-c^{2} x^{2}+1}}+\frac{b c^{3} d x^{4} \sqrt{-c^{2} d x^{2}+d}}{16 \sqrt{-c^{2} x^{2}+1}} \\
& \quad+\frac{3 d(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{16 b c \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type 3, 370 leaves):

$$
\begin{aligned}
& \frac{a x\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{4}+\frac{3 a d x \sqrt{-c^{2} d x^{2}+d}}{8}+\frac{3 a d^{2} \arctan \left(\frac{\sqrt{c^{2} d} x}{\sqrt{-c^{2} d x^{2}+d}}\right)}{8 \sqrt{c^{2} d}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} d c^{4} \arcsin (c x) x^{5}}{4\left(c^{2} x^{2}-1\right)} \\
& \quad+\frac{7 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d c^{2} \arcsin (c x) x^{3}}{8\left(c^{2} x^{2}-1\right)}-\frac{17 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d \sqrt{-c^{2} x^{2}+1}}{128 c\left(c^{2} x^{2}-1\right)}-\frac{5 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d \arcsin (c x) x}{8\left(c^{2} x^{2}-1\right)} \\
& -\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{2} d}{16 c\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} d c^{3} \sqrt{-c^{2} x^{2}+1} x^{4}}{16\left(c^{2} x^{2}-1\right)}+\frac{5 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d c \sqrt{-c^{2} x^{2}+1} x^{2}}{16\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int x\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x)) \mathrm{d} x
$$

Optimal(type 3, 131 leaves, 3 steps):

$$
-\frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))}{5 c^{2} d}+\frac{b d x \sqrt{-c^{2} d x^{2}+d}}{5 c \sqrt{-c^{2} x^{2}+1}}-\frac{2 b c d x^{3} \sqrt{-c^{2} d x^{2}+d}}{15 \sqrt{-c^{2} x^{2}+1}}+\frac{b c^{3} d x^{5} \sqrt{-c^{2} d x^{2}+d}}{25 \sqrt{-c^{2} x^{2}+1}}
$$

Result(type 3, 596 leaves):

$$
\begin{aligned}
& -\frac{a\left(-c^{2} d x^{2}+d\right)^{5 / 2}}{5 c^{2} d}+b(\\
& -\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(16 x^{6} c^{6}-28 c^{4} x^{4}-16 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}+13 c^{2} x^{2}+20 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}-5 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c-1\right)(\mathrm{I}+5 \arcsin (c x)) d}{800\left(c^{2} x^{2}-1\right) c^{2}} \\
& +\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 c^{4} x^{4}-5 c^{2} x^{2}-4 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+3 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+1\right)(\mathrm{I}+3 \arcsin (c x)) d}{96\left(c^{2} x^{2}-1\right) c^{2}} \\
& -\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(c^{2} x^{2}-\mathrm{I} c x \sqrt{-c^{2} x^{2}+1}-1\right)(\arcsin (c x)+\mathrm{I}) d}{16\left(c^{2} x^{2}-1\right) c^{2}}-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+c^{2} x^{2}-1\right)(\arcsin (c x)-\mathrm{I}) d}{16\left(c^{2} x^{2}-1\right) c^{2}} \\
& +\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+4 c^{4} x^{4}-3 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c-5 c^{2} x^{2}+1\right)(-\mathrm{I}+3 \arcsin (c x)) d}{96\left(c^{2} x^{2}-1\right) c^{2}} \\
& \left.-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(16 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}+16 x^{6} c^{6}-20 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}-28 c^{4} x^{4}+5 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+13 c^{2} x^{2}-1\right)(-\mathrm{I}+5 \arcsin (c x)) d}{800\left(c^{2} x^{2}-1\right) c^{2}}\right)
\end{aligned}
$$

Problem 26: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))}{x^{10}} \mathrm{~d} x
$$

Optimal(type 3, 244 leaves, 6 steps):

$$
\begin{aligned}
& -\frac{\left(-c^{2} d x^{2}+d\right)^{7 / 2}(a+b \arcsin (c x))}{9 d x^{9}}-\frac{2 c^{2}\left(-c^{2} d x^{2}+d\right)^{7 / 2}(a+b \arcsin (c x))}{63 d x^{7}}-\frac{b c d^{2}\left(-c^{2} x^{2}+1\right)^{7 / 2} \sqrt{-c^{2} d x^{2}+d}}{72 x^{8}}-\frac{b c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}}{189 x^{6} \sqrt{-c^{2} x^{2}+1}} \\
& \quad+\frac{b c^{5} d^{2} \sqrt{-c^{2} d x^{2}+d}}{42 x^{4} \sqrt{-c^{2} x^{2}+1}}-\frac{b c^{7} d^{2} \sqrt{-c^{2} d x^{2}+d}}{21 x^{2} \sqrt{-c^{2} x^{2}+1}}-\frac{2 b c^{9} d^{2} \ln (x) \sqrt{-c^{2} d x^{2}+d}}{63 \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type ?, 5322 leaves): Display of huge result suppressed!
Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))}{x^{12}} \mathrm{~d} x
$$

Optimal(type 3, 313 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{\left(-c^{2} d x^{2}+d\right)^{7 / 2}(a+b \arcsin (c x))}{11 d x^{11}}-\frac{4 c^{2}\left(-c^{2} d x^{2}+d\right)^{7 / 2}(a+b \arcsin (c x))}{99 d x^{9}}-\frac{8 c^{4}\left(-c^{2} d x^{2}+d\right)^{7 / 2}(a+b \arcsin (c x))}{693 d x^{7}}-\frac{b c d^{2} \sqrt{-c^{2} d x^{2}+d}}{110 x^{10} \sqrt{-c^{2} x^{2}+1}} \\
& \quad+\frac{23 b c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}}{792 x^{8} \sqrt{-c^{2} x^{2}+1}}-\frac{113 b c^{5} d^{2} \sqrt{-c^{2} d x^{2}+d}}{4158 x^{6} \sqrt{-c^{2} x^{2}+1}}+\frac{b c^{7} d^{2} \sqrt{-c^{2} d x^{2}+d}}{924 x^{4} \sqrt{-c^{2} x^{2}+1}}+\frac{2 b c^{9} d^{2} \sqrt{-c^{2} d x^{2}+d}}{693 x^{2} \sqrt{-c^{2} x^{2}+1}}-\frac{8 b c^{11} d^{2} \ln (x) \sqrt{-c^{2} d x^{2}+d}}{693 \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type ?, 6757 leaves): Display of huge result suppressed!

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{x(a+b \arcsin (c x))}{\sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 3, 61 leaves, 2 steps):

$$
\frac{b x \sqrt{-c^{2} x^{2}+1}}{c \sqrt{-c^{2} d x^{2}+d}}-\frac{(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{c^{2} d}
$$

Result(type 3, 158 leaves):

$$
\begin{aligned}
& -\frac{a \sqrt{-c^{2} d x^{2}+d}}{c^{2} d}+b\left(-\frac{(\arcsin (c x)+\mathrm{I}) \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(c^{2} x^{2}-\mathrm{I} c x \sqrt{-c^{2} x^{2}+1}-1\right)}{2 c^{2} d\left(c^{2} x^{2}-1\right)}\right. \\
& \left.-\frac{(\arcsin (c x)-\mathrm{I}) \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+c^{2} x^{2}-1\right)}{2 c^{2} d\left(c^{2} x^{2}-1\right)}\right)
\end{aligned}
$$

Problem 32: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \arcsin (c x)}{x^{3} \sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 4, 225 leaves, 8 steps):

$$
\begin{aligned}
& -\frac{b c \sqrt{-c^{2} x^{2}+1}}{2 x \sqrt{-c^{2} d x^{2}+d}}-\frac{c^{2}(a+b \arcsin (c x)) \operatorname{arctanh}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{\sqrt{-c^{2} d x^{2}+d}}+\frac{\mathrm{I} b c^{2} \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{2 \sqrt{-c^{2} d x^{2}+d}} \\
& \quad-\frac{\mathrm{I} b c^{2} \operatorname{poly} \log \left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right.}{2 \sqrt{-c^{2} d x^{2}+d}} \sqrt{-c^{2} x^{2}+1}
\end{aligned}
$$

Result(type 4, 460 leaves):

$$
\begin{aligned}
& -\frac{a \sqrt{-c^{2} d x^{2}+d}}{2 d x^{2}}-\frac{a c^{2} \ln \left(\frac{2 d+2 \sqrt{d} \sqrt{-c^{2} d x^{2}+d}}{x}\right)}{2 \sqrt{d}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) c^{2}}{2 d\left(c^{2} x^{2}-1\right)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c}{2 x d\left(c^{2} x^{2}-1\right)} \\
& \quad+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{2 x^{2} d\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \arcsin (c x) \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{2 d\left(c^{2} x^{2}-1\right)} \\
& \quad+\frac{b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{2 d\left(c^{2} x^{2}-1\right)}+\frac{\mathrm{I} b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{2 d\left(c^{2} x^{2}-1\right)} \\
& \quad-\frac{\mathrm{I} b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{2 d\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 33: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \arcsin (c x)}{x^{4} \sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 3, 127 leaves, 4 steps):

$$
-\frac{b c \sqrt{-c^{2} x^{2}+1}}{6 x^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{2 b c^{3} \ln (x) \sqrt{-c^{2} x^{2}+1}}{3 \sqrt{-c^{2} d x^{2}+d}}-\frac{(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{3 d x^{3}}-\frac{2 c^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{3 d x}
$$

Result(type 3, 848 leaves):

$$
\begin{aligned}
& -\frac{a \sqrt{-c^{2} d x^{2}+d}}{3 d x^{3}}-\frac{2 a c^{2} \sqrt{-c^{2} d x^{2}+d}}{3 d x}+\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3} c^{6}}{3\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d}-\frac{2 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} c^{3}}{3\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d} \\
& -\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x\left(-c^{2} x^{2}+1\right) c^{4}}{3\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d}-\frac{2 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{5} c^{8}}{3\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d}+\frac{4 \mathrm{I} b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) c^{3}}{3 d\left(c^{2} x^{2}-1\right)} \\
& -\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3} \arcsin (c x) c^{6}}{\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d}+\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x c^{4}}{3\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d}-\frac{2 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} c^{5}}{\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d} \\
& -\frac{2 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3}\left(-c^{2} x^{2}+1\right) c^{6}}{3\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} x \arcsin (c x) c^{4}}{3\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c^{3}}{2\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d} \\
& +\frac{4 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) c^{2}}{3\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d x}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c}{6\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d x^{2}}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{3\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) d x^{3}} \\
& -\frac{2 b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \ln \left(\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}-1\right) c^{3}}{3 d\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 34: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{5}(a+b \arcsin (c x))}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 197 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))}{3 c^{6} d^{3}}+\frac{a+b \arcsin (c x)}{c^{6} d \sqrt{-c^{2} d x^{2}+d}}+\frac{2(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{c^{6} d^{2}}-\frac{5 b x \sqrt{-c^{2} d x^{2}+d}}{3 c^{5} d^{2} \sqrt{-c^{2} x^{2}+1}}-\frac{b x^{3} \sqrt{-c^{2} d x^{2}+d}}{9 c^{3} d^{2} \sqrt{-c^{2} x^{2}+1}} \\
& \quad-\frac{b \operatorname{arctanh}(c x) \sqrt{-c^{2} d x^{2}+d}}{c^{6} d^{2} \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type 3, 422 leaves):
$-\frac{a x^{4}}{3 c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{4 a x^{2}}{3 c^{4} d \sqrt{-c^{2} d x^{2}+d}}+\frac{8 a}{3 c^{6} d \sqrt{-c^{2} d x^{2}+d}}-\frac{8 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{3 c^{6} d^{2}\left(c^{2} x^{2}-1\right)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x^{4}}{3 c^{2} d^{2}\left(c^{2} x^{2}-1\right)}$

$$
\begin{aligned}
& +\frac{4 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x^{2}}{3 c^{4} d^{2}\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}-\mathrm{I}\right)}{c^{6} d^{2}\left(c^{2} x^{2}-1\right)} \\
& +\frac{b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}+\mathrm{I}\right)}{c^{6} d^{2}\left(c^{2} x^{2}-1\right)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} x^{3}}{9 c^{3} d^{2}\left(c^{2} x^{2}-1\right)}+\frac{5 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} x}{3 c^{5} d^{2}\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{4}(a+b \arcsin (c x))}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 190 leaves, 7 steps):

$$
\begin{aligned}
& \frac{x^{3}(a+b \arcsin (c x))}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{b x^{2} \sqrt{-c^{2} x^{2}+1}}{4 c^{3} d \sqrt{-c^{2} d x^{2}+d}} \\
& \quad+\frac{3(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{4 b c^{5} d \sqrt{-c^{2} d x^{2}+d}}+\frac{b \ln \left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} x^{2}+1}}{2 c^{5} d \sqrt{-c^{2} d x^{2}+d}} \\
& \quad+\frac{3 x(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{2 c^{4} d^{2}}
\end{aligned}
$$

Result(type 3, 435 leaves):

$$
\begin{aligned}
& -\frac{a x^{3}}{2 c^{2} d \sqrt{-c^{2} d x^{2}+d}}+\frac{3 a x}{2 c^{4} d \sqrt{-c^{2} d x^{2}+d}}-\frac{3 a \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{2 c^{4} d \sqrt{c^{2} d}}+\frac{3 b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)^{2}}{4\left(c^{2} x^{2}-1\right) c^{5} d^{2}} \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} x^{2}}{4\left(c^{2} x^{2}-1\right) c^{3} d^{2}}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x^{3}}{2\left(c^{2} x^{2}-1\right) c^{2} d^{2}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1}}{8\left(c^{2} x^{2}-1\right) c^{5} d^{2}} \\
& +\frac{\mathrm{I} b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{\left(c^{2} x^{2}-1\right) c^{5} d^{2}}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x}{2\left(c^{2} x^{2}-1\right) c^{4} d^{2}}-\frac{b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \ln \left(1+\left(\operatorname{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{\left(c^{2} x^{2}-1\right) c^{5} d^{2}}
\end{aligned}
$$

Problem 36: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}(a+b \arcsin (c x))}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} d x
$$

Optimal(type 3, 121 leaves, 3 steps):

$$
\frac{x(a+b \arcsin (c x))}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{2 b c^{3} d \sqrt{-c^{2} d x^{2}+d}}+\frac{b \ln \left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} x^{2}+1}}{2 c^{3} d \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 3, 273 leaves):

$$
\begin{aligned}
& \frac{a x}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{a \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{c^{2} d \sqrt{c^{2} d}}+\frac{b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)^{2}}{2 c^{3}\left(c^{2} x^{2}-1\right) d^{2}}+\frac{\mathrm{I} b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{c^{3}\left(c^{2} x^{2}-1\right) d^{2}} \\
& -\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}}-\frac{b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{c^{3}\left(c^{2} x^{2}-1\right) d^{2}}
\end{aligned}
$$

Problem 37: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \arcsin (c x)}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 72 leaves, 2 steps):

$$
\frac{x(a+b \arcsin (c x))}{d \sqrt{-c^{2} d x^{2}+d}}+\frac{b \ln \left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} x^{2}+1}}{2 c d \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 3, 176 leaves):

$$
\begin{aligned}
& \frac{a x}{d \sqrt{-c^{2} d x^{2}+d}}+\frac{\mathrm{I} b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{c\left(c^{2} x^{2}-1\right) d^{2}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x}{\left(c^{2} x^{2}-1\right) d^{2}} \\
& -\frac{b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{c\left(c^{2} x^{2}-1\right) d^{2}}
\end{aligned}
$$

Problem 39: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{4}(a+b \arcsin (c x))}{\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 188 leaves, 7 steps):

$$
\begin{aligned}
& \frac{x^{3}(a+b \arcsin (c x))}{3 c^{2} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{x(a+b \arcsin (c x))}{c^{4} d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{b}{6 c^{5} d^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}+\frac{(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{2 b c^{5} d^{2} \sqrt{-c^{2} d x^{2}+d}} \\
& \quad-\frac{2 b \ln \left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} x^{2}+1}}{3 c^{5} d^{2} \sqrt{-c^{2} d x^{2}+d}}
\end{aligned}
$$

Result(type 3, 1509 leaves):
$\frac{a x^{3}}{3 c^{2} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{a x}{c^{4} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{a \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{c^{4} d^{2} \sqrt{c^{2} d}}+\frac{2 \operatorname{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x}{d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right) c^{4}}$

$$
\begin{aligned}
& -\frac{8 \mathrm{I} b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{3 c^{5} d^{3}\left(c^{2} x^{2}-1\right)}-\frac{2 \operatorname{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-c^{2} x^{2}+1\right) x}{d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right) c^{4}} \\
& -\frac{8 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} x^{7}}{3 d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right)}+\frac{14 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-c^{2} x^{2}+1\right) x^{3}}{3 d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right) c^{2}} \\
& +\frac{220 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{2}}{3 d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right) c^{3}}-\frac{20 \operatorname{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3}}{3 d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right) c^{2}} \\
& -\frac{4 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} x^{4}}{d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right) c}+\frac{13 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} x^{2}}{2 d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right) c^{3}} \\
& +\frac{4 b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{3 c^{5} d^{3}\left(c^{2} x^{2}-1\right)}+\frac{32 b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \arcsin (c x) x^{7}}{d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right)} \\
& -\frac{8 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1}}{3 d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right) c^{5}}-\frac{76 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x^{5}}{d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right)} \\
& +\frac{22 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{5}}{3 d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right)}+\frac{181 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x^{3}}{3 d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right) c^{2}} \\
& -\frac{16 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x}{d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right) c^{4}}-\frac{b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)^{2}}{2 c^{5} d^{3}\left(c^{2} x^{2}-1\right)} \\
& -\frac{8 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-c^{2} x^{2}+1\right) x^{5}}{3 d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right)}-\frac{84 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{4}}{d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right) c} \\
& +\frac{32 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} c \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{6}}{d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right)}-\frac{64 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{3 d^{3}\left(24 c^{8} x^{8}-87 x^{6} c^{6}+118 c^{4} x^{4}-71 c^{2} x^{2}+16\right) c^{5}}
\end{aligned}
$$

Problem 40: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}(a+b \arcsin (c x))}{\left(-c^{2} d x^{2}+d\right)^{5 / 2}} d x
$$

Optimal(type 3, 109 leaves, 4 steps):

$$
\frac{x^{3}(a+b \arcsin (c x))}{3 d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{b}{6 c^{3} d^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}-\frac{b \ln \left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} x^{2}+1}}{6 c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 3, 1218 leaves):
$\frac{a x}{3 c^{2} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{a x}{3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-c^{2} x^{2}+1\right) x^{3}}{6 d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right)}-\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3}}{6 d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right)}$

$$
\begin{aligned}
& -\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)}{3 d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right) c^{3}}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{4} \arcsin (c x) x^{7}}{d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right)}+\frac{\mathrm{Ib} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{3} \sqrt{-c^{2} x^{2}+1} \arcsin (c x) x^{6}}{d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right)} \\
& -\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} c \sqrt{-c^{2} x^{2}+1} x^{4}}{2 d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right)}+\frac{\mathrm{Ib} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} x^{5}}{3 d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right)}-\frac{2 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} c \sqrt{-c^{2} x^{2}+1} \arcsin (c x) x^{4}}{d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right)} \\
& -\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \arcsin (c x) x^{5}}{d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right)}-\frac{2 I b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{3 c^{3} d^{3}\left(c^{2} x^{2}-1\right)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} x^{2}}{2 d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right) c} \\
& -\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2}\left(-c^{2} x^{2}+1\right) x^{5}}{6 d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right)}-\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{4} x^{7}}{6 d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x^{3}}{3 d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right)} \\
& -\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1}}{6 d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right) c^{3}}+\frac{4 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x) x^{2}}{3 d^{3}\left(3 c^{8} x^{8}-9 x^{6} c^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right) c} \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{3 c^{3} d^{3}\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 41: Unable to integrate problem.

$$
\int \frac{(f x)^{3 / 2}(a+b \arcsin (c x))}{\sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 5, 109 leaves, 1 step):
$2(f x)^{5 / 2}(a+b \arcsin (c x))$ hypergeom $\left(\left[\frac{1}{2}, \frac{5}{4}\right],\left[\frac{9}{4}\right], c^{2} x^{2}\right) \sqrt{-c^{2} x^{2}+1}$

$$
5 f \sqrt{-c^{2} d x^{2}+d}
$$

$-\frac{4 b c(f x)^{7 / 2} \text { HypergeometricPFQ }\left(\left[1, \frac{7}{4}, \frac{7}{4}\right],\left[\frac{9}{4}, \frac{11}{4}\right], c^{2} x^{2}\right) \sqrt{-c^{2} x^{2}+1}}{}$

$$
35 f^{2} \sqrt{-c^{2} d x^{2}+d}
$$

Result(type 8, 29 leaves):

$$
\int \frac{(f x)^{3 / 2}(a+b \arcsin (c x))}{\sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Problem 44: Unable to integrate problem.

$$
\int \frac{x^{m}(a+b \arcsin (c x))}{\sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 5, 141 leaves, 1 step):
$x^{1+m}(a+b \arcsin (c x))$ hypergeom $\left(\left[\frac{1}{2}, \frac{1}{2}+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{-c^{2} x^{2}+1}$

$$
(1+m) \sqrt{-c^{2} d x^{2}+d}
$$

$$
-\frac{b c x^{2+m} \text { HypergeometricPFQ }\left(\left[1,1+\frac{m}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}, 2+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{-c^{2} x^{2}+1}}{\left(m^{2}+3 m+2\right) \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 8, 27 leaves):

$$
\int \frac{x^{m}(a+b \arcsin (c x))}{\sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Problem 45: Unable to integrate problem.

$$
\int \frac{x^{m} \arcsin (a x)}{\sqrt{-a^{2} x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 5, 86 leaves, 1 step):

$$
\frac{x^{1+m} \arcsin (a x) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right], a^{2} x^{2}\right)}{1+m}-\frac{a x^{2+m} \operatorname{HypergeometricPFQ}\left(\left[1,1+\frac{m}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}, 2+\frac{m}{2}\right], a^{2} x^{2}\right)}{m^{2}+3 m+2}
$$

Result(type 8, 22 leaves):

$$
\int \frac{x^{m} \arcsin (a x)}{\sqrt{-a^{2} x^{2}+1}} \mathrm{~d} x
$$

Problem 49: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{x\left(-c^{2} d x^{2}+d\right)} \mathrm{d} x
$$

Optimal(type 4, 175 leaves, 9 steps):
$-\frac{2(a+b \arcsin (c x))^{2} \operatorname{arctanh}\left(\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d}+\frac{\mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d}$

$$
-\frac{\mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d}-\frac{b^{2} \operatorname{polylog}\left(3,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d}+\frac{b^{2} \operatorname{polylog}\left(3,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d}
$$

Result(type 4, 528 leaves):
$-\frac{a^{2} \ln (c x+1)}{2 d}+\frac{a^{2} \ln (c x)}{d}-\frac{a^{2} \ln (c x-1)}{2 d}+\frac{b^{2} \arcsin (c x)^{2} \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d}-\frac{2 \mathrm{I} b^{2} \arcsin (c x) \operatorname{poly} \log \left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d}$

$$
\begin{aligned}
& +\frac{2 b^{2} \operatorname{polylog}\left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d}+\frac{b^{2} \arcsin (c x)^{2} \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d}+\frac{\mathrm{I} a b \operatorname{poly} \log \left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d} \\
& +\frac{2 b^{2} \operatorname{poly} \log \left(3,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d}-\frac{b^{2} \arcsin (c x)^{2} \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d}-\frac{2 \mathrm{I} a b \operatorname{poly} \log \left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d} \\
& -\frac{b^{2} \operatorname{polylog}\left(3,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d}+\frac{2 a b \arcsin (c x) \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d}-\frac{2 \mathrm{I} a b \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d} \\
& +\frac{2 a b \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d}-\frac{2 \mathrm{I} b^{2} \arcsin (c x) \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d}-\frac{2 a b \arcsin (c x) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d} \\
& +\frac{\mathrm{I} b^{2} \arcsin (c x) \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d}
\end{aligned}
$$

Problem 50: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{x^{3}\left(-c^{2} d x^{2}+d\right)} d x
$$

Optimal(type 4, 250 leaves, 12 steps):

$$
\begin{aligned}
& -\frac{(a+b \arcsin (c x))^{2}}{2 d x^{2}}-\frac{2 c^{2}(a+b \arcsin (c x))^{2} \operatorname{arctanh}\left(\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d}+\frac{b^{2} c^{2} \ln (x)}{d} \\
& +\frac{\mathrm{I} b c^{2}(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d}-\frac{\mathrm{I} b c^{2}(a+b \arcsin (c x)) \operatorname{polylog}\left(2,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d} \\
& -\frac{b^{2} c^{2} \operatorname{polylog}\left(3,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d}+\frac{b^{2} c^{2} \operatorname{polylog}\left(3,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d}-\frac{b c(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{d x}
\end{aligned}
$$

Result(type 4, 792 leaves):

$$
\begin{aligned}
& \frac{c^{2} b^{2} \arcsin (c x)^{2} \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d}+\frac{c^{2} b^{2} \arcsin (c x)^{2} \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d}-\frac{a b \arcsin (c x)}{d x^{2}}+\frac{\mathrm{I} c^{2} a b}{d} \\
& \quad-\frac{c^{2} b^{2} \arcsin (c x)^{2} \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d}+\frac{\mathrm{I} c^{2} b^{2} \arcsin (c x)}{d}-\frac{a^{2}}{2 d x^{2}}-\frac{b^{2} \arcsin (c x)^{2}}{2 d x^{2}}-\frac{2 c^{2} b^{2} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d} \\
& \quad+\frac{c^{2} b^{2} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}-1\right)}{d}+\frac{c^{2} b^{2} \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d}-\frac{c^{2} a^{2} \ln (c x+1)}{2 d}+\frac{c^{2} a^{2} \ln (c x)}{d}-\frac{c^{2} a^{2} \ln (c x-1)}{2 d} \\
& \quad+\frac{2 c^{2} b^{2} \operatorname{polylog}\left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d}+\frac{2 c^{2} b^{2} \operatorname{poly} \log \left(3,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d}-\frac{b^{2} c^{2} \operatorname{poly} \log \left(3,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d} \\
& \quad+\frac{\mathrm{I} c^{2} b^{2} \arcsin (c x) \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d}+\frac{2 c^{2} a b \arcsin (c x) \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2 c^{2} a b \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d}-\frac{2 c^{2} a b \arcsin (c x) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d}+\frac{\mathrm{I} c^{2} a b \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d} \\
& -\frac{c b^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{d x}-\frac{c a b \sqrt{-c^{2} x^{2}+1}}{d x}-\frac{2 \mathrm{I} c^{2} b^{2} \arcsin (c x) \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d} \\
& -\frac{2 \mathrm{I} c^{2} b^{2} \arcsin (c x) \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d}-\frac{2 \mathrm{I} c^{2} a b \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d}-\frac{2 \mathrm{I} c^{2} a b \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d}
\end{aligned}
$$

Problem 51: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{x\left(-c^{2} d x^{2}+d\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 249 leaves, 12 steps):

$$
\begin{aligned}
& \frac{(a+b \arcsin (c x))^{2}}{2 d^{2}\left(-c^{2} x^{2}+1\right)}-\frac{2(a+b \arcsin (c x))^{2} \operatorname{arctanh}\left(\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{2}}-\frac{b^{2} \ln \left(-c^{2} x^{2}+1\right)}{2 d^{2}} \\
& \quad+\frac{\mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{2}}-\frac{\mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{2}} \\
& \quad-\frac{b^{2} \operatorname{polylog}\left(3,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d^{2}}+\frac{b^{2} \operatorname{polylog}\left(3,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d^{2}}-\frac{b c x(a+b \arcsin (c x))}{d^{2} \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type 4, 828 leaves):
$-\frac{2 \mathrm{I} a b \text { polylog }\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}}-\frac{2 \mathrm{I} a b \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}}+\frac{\mathrm{I} a b}{d^{2}\left(c^{2} x^{2}-1\right)}-\frac{a b \arcsin (c x)}{d^{2}\left(c^{2} x^{2}-1\right)}$
$+\frac{2 a b \arcsin (c x) \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}}+\frac{2 a b \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}}+\frac{\mathrm{I} b^{2} \arcsin (c x)}{d^{2}\left(c^{2} x^{2}-1\right)}$
$+\frac{\mathrm{I} b^{2} \arcsin (c x) \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{2}}-\frac{2 \mathrm{I} b^{2} \arcsin (c x) \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}}$
$-\frac{2 \mathrm{I} b^{2} \arcsin (c x) \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}}-\frac{2 a b \arcsin (c x) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{2}}+\frac{\mathrm{I} a b \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{2}}$
$+\frac{a^{2}}{4 d^{2}(c x+1)}-\frac{a^{2}}{4 d^{2}(c x-1)}-\frac{a^{2} \ln (c x+1)}{2 d^{2}}+\frac{a^{2} \ln (c x)}{d^{2}}-\frac{a^{2} \ln (c x-1)}{2 d^{2}}-\frac{b^{2} \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{2}}$
$+\frac{2 b^{2} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}}+\frac{2 b^{2} \operatorname{poly} \log \left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}}+\frac{2 b^{2} \operatorname{polylog}\left(3,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}}$

$$
\begin{aligned}
& -\frac{b^{2} \operatorname{polylog}\left(3,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d^{2}}+\frac{b^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} c x}{d^{2}\left(c^{2} x^{2}-1\right)}-\frac{\mathrm{I} b^{2} \arcsin (c x) c^{2} x^{2}}{d^{2}\left(c^{2} x^{2}-1\right)}+\frac{a b \sqrt{-c^{2} x^{2}+1} c x}{d^{2}\left(c^{2} x^{2}-1\right)}-\frac{\mathrm{I} a b c^{2} x^{2}}{d^{2}\left(c^{2} x^{2}-1\right)} \\
& -\frac{b^{2} \arcsin (c x)^{2}}{2 d^{2}\left(c^{2} x^{2}-1\right)}+\frac{b^{2} \arcsin (c x)^{2} \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}}+\frac{b^{2} \arcsin (c x)^{2} \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}} \\
& -\frac{b^{2} \arcsin (c x)^{2} \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{2}}
\end{aligned}
$$

Problem 52: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{x^{4}\left(-c^{2} d x^{2}+d\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 472 leaves, 32 steps):

$$
\begin{aligned}
& -\frac{b^{2} c^{2}}{3 d^{2} x}-\frac{(a+b \arcsin (c x))^{2}}{3 d^{2} x^{3}\left(-c^{2} x^{2}+1\right)}-\frac{5 c^{2}(a+b \arcsin (c x))^{2}}{3 d^{2} x\left(-c^{2} x^{2}+1\right)}+\frac{5 c^{4} x(a+b \arcsin (c x))^{2}}{2 d^{2}\left(-c^{2} x^{2}+1\right)}-\frac{5 \mathrm{I} c^{3}(a+b \arcsin (c x))^{2} \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}} \\
& \quad-\frac{26 b c^{3}(a+b \arcsin (c x)) \operatorname{arctanh}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{3 d^{2}}+\frac{b^{2} c^{3} \operatorname{arctanh}(c x)}{d^{2}}+\frac{13 b^{2} c^{3} \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{3 d^{2}} \\
& \quad+\frac{5 \mathrm{I} b c^{3}(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}}-\frac{5 \mathrm{I} b c^{3}(a+b \arcsin (c x)) \operatorname{polylog}\left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}} \\
& \quad-\frac{13 \mathrm{I} b^{2} c^{3} \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{3 d^{2}}-\frac{5 b^{2} c^{3} \operatorname{polylog}\left(3,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}}+\frac{5 b^{2} c^{3} \operatorname{polylog}\left(3, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}} \\
& \\
& -\frac{2 b c^{3}(a+b \arcsin (c x))}{3 d^{2} \sqrt{-c^{2} x^{2}+1}}-\frac{b c(a+b \arcsin (c x))}{3 d^{2} x^{2} \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result (type 4, 1018 leaves):

$$
\begin{aligned}
& -\frac{13 c^{3} b^{2} \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{3 d^{2}}+\frac{5 c^{3} b^{2} \arcsin (c x)^{2} \ln \left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{2 d^{2}} \\
& -\frac{5 c^{3} b^{2} \arcsin (c x)^{2} \ln \left(1+\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{2 d^{2}}-\frac{13 c^{3} a b \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{3 d^{2}}+\frac{b^{2} \arcsin (c x)^{2}}{3 d^{2} x^{3}\left(c^{2} x^{2}-1\right)} \\
& \quad+\frac{13 \mathrm{I} c^{3} b^{2} \operatorname{dilog}\left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{3 d^{2}}+\frac{13 \mathrm{I} c^{3} b^{2} \operatorname{dilog}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{3 d^{2}}-\frac{2 \mathrm{I} c^{3} b^{2} \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}}+\frac{c^{2} b^{2}}{3 d^{2} x\left(c^{2} x^{2}-1\right)} \\
& -\frac{c^{4} b^{2} x}{3 d^{2}\left(c^{2} x^{2}-1\right)}+\frac{13 c^{3} a b \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}-1\right)}{3 d^{2}}-\frac{a^{2}}{3 d^{2} x^{3}}+\frac{2 c^{3} b^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{3 d^{2}\left(c^{2} x^{2}-1\right)}+\frac{2 c^{3} a b \sqrt{-c^{2} x^{2}+1}}{3 d^{2}\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{5 c^{3} a b \arcsin (c x) \ln \left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}}-\frac{5 c^{3} a b \arcsin (c x) \ln \left(1+\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}}-\frac{5 c^{4} b^{2} x \arcsin (c x)^{2}}{2 d^{2}\left(c^{2} x^{2}-1\right)} \\
& +\frac{5 c^{2} b^{2} \arcsin (c x)^{2}}{3 d^{2} x\left(c^{2} x^{2}-1\right)}+\frac{2 a b \arcsin (c x)}{3 d^{2} x^{3}\left(c^{2} x^{2}-1\right)}-\frac{5 \mathrm{I} c^{3} b^{2} \arcsin (c x) \operatorname{poly} \log \left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}} \\
& +\frac{5 \mathrm{I} c^{3} b^{2} \arcsin (c x) \operatorname{poly} \log \left(2,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}}-\frac{5 \mathrm{I} c^{3} a b \operatorname{dilog}\left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}} \\
& +\frac{5 \mathrm{I} c^{3} a b \operatorname{dilog}\left(1+\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}}-\frac{c^{3} a^{2}}{4 d^{2}(c x+1)}-\frac{c^{3} a^{2}}{4 d^{2}(c x-1)}-\frac{2 c^{2} a^{2}}{d^{2} x}+\frac{5 c^{3} a^{2} \ln (c x+1)}{4 d^{2}}-\frac{5 c^{3} a^{2} \ln (c x-1)}{4 d^{2}} \\
& -\frac{5 b^{2} c^{3} \operatorname{poly} \log \left(3,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}}+\frac{5 b^{2} c^{3} \operatorname{polylog}\left(3, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}}+\frac{c b^{2} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)}{3 d^{2} x^{2}\left(c^{2} x^{2}-1\right)}-\frac{5 c^{4} a b x \arcsin (c x)}{d^{2}\left(c^{2} x^{2}-1\right)} \\
& +\frac{10 c^{2} a b \arcsin (c x)}{3 d^{2} x\left(c^{2} x^{2}-1\right)}+\frac{c a b \sqrt{-c^{2} x^{2}+1}}{3 d^{2} x^{2}\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 53: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{\left(-c^{2} d x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 339 leaves, 15 steps):

$$
\begin{aligned}
& \frac{b^{2} x}{12 d^{3}\left(-c^{2} x^{2}+1\right)}-\frac{b(a+b \arcsin (c x))}{6 c d^{3}\left(-c^{2} x^{2}+1\right)^{3 / 2}}+\frac{x(a+b \arcsin (c x))^{2}}{4 d^{3}\left(-c^{2} x^{2}+1\right)^{2}}+\frac{3 x(a+b \arcsin (c x))^{2}}{8 d^{3}\left(-c^{2} x^{2}+1\right)}-\frac{3 \mathrm{I}(a+b \arcsin (c x))^{2} \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{4 c d^{3}} \\
& +\frac{5 b^{2} \operatorname{arctanh}(c x)}{6 c d^{3}}+\frac{3 \mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 c d^{3}}-\frac{3 \mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 c d^{3}} \\
& -\frac{3 b^{2} \operatorname{poly} \log \left(3,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 c d^{3}}+\frac{3 b^{2} \operatorname{polylog}\left(3, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 c d^{3}}-\frac{3 b(a+b \arcsin (c x))}{4 c d^{3} \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type 4, 889 leaves):

$$
\begin{aligned}
& -\frac{3 c^{2} b^{2} \arcsin (c x)^{2} x^{3}}{8 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{11 b^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{12 c d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{11 a b \sqrt{-c^{2} x^{2}+1}}{12 c d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{3 a b \arcsin (c x) \ln \left(1+\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 c d^{3}} \\
& +\frac{3 a b \arcsin (c x) \ln \left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 c d^{3}}+\frac{5 a b \arcsin (c x) x}{4 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{3 \mathrm{I} a b \operatorname{dilog}\left(1+\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 c d^{3}} \\
& -\frac{3 \mathrm{I} a b \operatorname{dilog}\left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 c d^{3}}-\frac{3 \mathrm{I} b^{2} \arcsin (c x) \operatorname{poly} \log \left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 c d^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{3 \mathrm{I} b^{2} \arcsin (c x) \operatorname{polylog}\left(2,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 c d^{3}}-\frac{3 b^{2} \operatorname{poly} \log \left(3,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 c d^{3}}+\frac{3 b^{2} \operatorname{polylog}\left(3, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 c d^{3}} \\
& -\frac{c^{2} b^{2} x^{3}}{12 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{5 b^{2} \arcsin (c x)^{2} x}{8 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{3 b^{2} \arcsin (c x)^{2} \ln \left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{8 c d^{3}} \\
& -\frac{3 b^{2} \arcsin (c x)^{2} \ln \left(1+\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{8 c d^{3}}-\frac{5 \mathrm{I} b^{2} \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{3 c d^{3}}+\frac{a^{2}}{12 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{b^{2} x}{16 c d^{3}(c x+1)} \\
& +\frac{a^{2}}{16 c d^{3}(c x-1)^{2}}-\frac{3 a^{2}}{16 c d^{3}(c x-1)}-\frac{3 a^{2} \ln (c x+1)}{16 c d^{3}(c x+1)^{2}}+\frac{3 a^{2} \ln (c x-1)}{16 c d^{3}}-\frac{3 c^{2} a b \arcsin (c x) x^{3}}{4 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)} \\
& +\frac{3 c a b \sqrt{-c^{2} x^{2}+1} x^{2}}{4 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{3 c b^{2} \sqrt{-c^{2} x^{2}+1} \arcsin (c x) x^{2}}{4 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}
\end{aligned}
$$

Problem 54: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{x^{2}\left(-c^{2} d x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 458 leaves, 27 steps):

$$
\begin{aligned}
& \frac{b^{2} c^{2} x}{12 d^{3}\left(-c^{2} x^{2}+1\right)}-\frac{b c(a+b \arcsin (c x))}{6 d^{3}\left(-c^{2} x^{2}+1\right)^{3 / 2}}-\frac{(a+b \arcsin (c x))^{2}}{d^{3} x\left(-c^{2} x^{2}+1\right)^{2}}+\frac{5 c^{2} x(a+b \arcsin (c x))^{2}}{4 d^{3}\left(-c^{2} x^{2}+1\right)^{2}}+\frac{15 c^{2} x(a+b \arcsin (c x))^{2}}{8 d^{3}\left(-c^{2} x^{2}+1\right)} \\
& -\frac{15 \mathrm{I} c(a+b \arcsin (c x))^{2} \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{4 d^{3}}-\frac{4 b c(a+b \arcsin (c x)) \operatorname{arctanh}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}+\frac{11 b^{2} c \operatorname{arctanh}(c x)}{6 d^{3}} \\
& +\frac{2 \mathrm{I} b^{2} c \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}+\frac{15 \mathrm{I} b c(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 d^{3}} \\
& -\frac{15 \mathrm{I} b c(a+b \arcsin (c x)) \operatorname{polylog}\left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 d^{3}}-\frac{2 \mathrm{I} b^{2} c \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}} \\
& -\frac{15 b^{2} c \operatorname{polylog}\left(3,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 d^{3}}+\frac{15 b^{2} c \operatorname{polylog}\left(3, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 d^{3}}-\frac{7 b c(a+b \arcsin (c x))}{4 d^{3} \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type 4, 1092 leaves):

$$
\begin{aligned}
& -\frac{15 a b \arcsin (c x) c^{4} x^{3}}{4 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{7 a b \sqrt{-c^{2} x^{2}+1} c^{3} x^{2}}{4 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{25 a b \arcsin (c x) c^{2} x}{4 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{7 b^{2} \sqrt{-c^{2} x^{2}+1} \arcsin (c x) c^{3} x^{2}}{4 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{a^{2}}{d^{3} x} \\
& -\frac{15 b^{2} c \operatorname{poly} \log \left(3,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 d^{3}}+\frac{15 b^{2} c \operatorname{poly} \log \left(3, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 d^{3}}-\frac{7 c a^{2}}{16 d^{3}(c x+1)}+\frac{b^{2}}{16 d^{3}(c x-1)^{2}} \\
& -\frac{7 c a^{2}}{16 d^{3}(c x-1)}-\frac{c a^{2}}{16 d^{3}(c x+1)^{2}}+\frac{15 c a^{2} \ln (c x+1)}{16 d^{3}}-\frac{15 c a^{2} \ln (c x-1)}{16 d^{3}}-\frac{b^{2}}{12 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{b^{2} c^{2} x}{12 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{2 c a b \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}+\frac{2 c a b \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}-1\right)}{d^{3}}-\frac{2 c b^{2} \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}} \\
& +\frac{15 c b^{2} \arcsin (c x)^{2} \ln \left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{8 d^{3}}-\frac{15 c b^{2} \arcsin (c x)^{2} \ln \left(1+\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{8 d^{3}}-\frac{b^{2} \arcsin (c x)^{2}}{d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right) x} \\
& +\frac{2 \mathrm{I} c b^{2} \operatorname{dilog}\left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}+\frac{2 \mathrm{I} c b^{2} \operatorname{dilog}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}-\frac{11 \mathrm{I} c b^{2} \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{3 d^{3}}-\frac{15 b^{2} \arcsin (c x)^{2} c^{4} x^{3}}{8 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)} \\
& +\frac{25 b^{2} \arcsin (c x)^{2} c^{2} x}{8 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{23 c b^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{12 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{23 c a b \sqrt{-c^{2} x^{2}+1}}{12 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{15 c a b \arcsin (c x) \ln \left(1+\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 d^{3}} \\
& +\frac{15 c a b \arcsin (c x) \ln \left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 d^{3}}-\frac{2 a b \arcsin (c x)}{d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right) x}+\frac{15 \mathrm{I} c a b \operatorname{dilog}\left(1+\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 d^{3}} \\
& -\frac{15 \mathrm{I} c a b \operatorname{dilog}\left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 d^{3}}-\frac{15 \mathrm{I} c b^{2} \arcsin (c x) \operatorname{polylog}\left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{4 d^{3}} \\
& \left.\left.+\frac{15 \mathrm{I} c b^{2} \arcsin (c x) \operatorname{polylog}\left(2,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right.\right.}{4 d^{3}}\right)\right)
\end{aligned}
$$

Problem 55: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{x^{3}\left(-c^{2} d x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 427 leaves, 23 steps):

$$
\begin{aligned}
& \frac{b^{2} c^{2}}{12 d^{3}\left(-c^{2} x^{2}+1\right)}-\frac{b c(a+b \arcsin (c x))}{d^{3} x\left(-c^{2} x^{2}+1\right)^{3 / 2}}+\frac{5 b c^{3} x(a+b \arcsin (c x))}{6 d^{3}\left(-c^{2} x^{2}+1\right)^{3 / 2}}+\frac{3 c^{2}(a+b \arcsin (c x))^{2}}{4 d^{3}\left(-c^{2} x^{2}+1\right)^{2}}-\frac{(a+b \arcsin (c x))^{2}}{2 d^{3} x^{2}\left(-c^{2} x^{2}+1\right)^{2}}+\frac{3 c^{2}(a+b \arcsin (c x))^{2}}{2 d^{3}\left(-c^{2} x^{2}+1\right)} \\
& -\frac{6 c^{2}(a+b \arcsin (c x))^{2} \operatorname{arctanh}\left(\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{3}}+\frac{b^{2} c^{2} \ln (x)}{d^{3}}-\frac{7 b^{2} c^{2} \ln \left(-c^{2} x^{2}+1\right)}{6 d^{3}} \\
& +\frac{3 \mathrm{I} b c^{2}(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{3}}-\frac{3 \mathrm{I} b c^{2}(a+b \arcsin (c x)) \operatorname{polylog}\left(2,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{3}} \\
& -\frac{3 b^{2} c^{2} \operatorname{polylog}\left(3,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d^{3}}+\frac{3 b^{2} c^{2} \operatorname{polylog}\left(3,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d^{3}}-\frac{4 b c^{3} x(a+b \arcsin (c x))}{3 d^{3} \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type 4, 1546 leaves):
$-\frac{3 b^{2} c^{2} \operatorname{poly} \log \left(3,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{2 d^{3}}-\frac{7 c^{2} b^{2} \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{3 d^{3}}+\frac{6 c^{2} b^{2} \operatorname{polylog}\left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}$

$$
\begin{aligned}
& +\frac{6 c^{2} b^{2} \operatorname{poly} \log \left(3,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}+\frac{3 c^{2} a^{2} \ln (c x)}{d^{3}}+\frac{c^{2} b^{2} \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}+\frac{8 c^{2} b^{2} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{3 d^{3}}+\frac{9 c^{2} a^{2}}{16 d^{3}(c x+1)} \\
& +\frac{c^{2} a^{2}}{16 d^{3}(c x-1)^{2}}-\frac{9 c^{2} a^{2}}{16 d^{3}(c x-1)}+\frac{c^{2} a^{2}}{16 d^{3}(c x+1)^{2}}+\frac{c^{2} b^{2}}{12 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{3 c^{2} a^{2} \ln (c x+1)}{2 d^{3}}-\frac{3 c^{2} a^{2} \ln (c x-1)}{2 d^{3}} \\
& +\frac{c^{2} b^{2} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}-1\right)}{d^{3}}+\frac{9 c^{2} b^{2} \arcsin (c x)^{2}}{4 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{3 c^{2} b^{2} \arcsin (c x)^{2} \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}} \\
& +\frac{3 c^{2} b^{2} \arcsin (c x)^{2} \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}-\frac{3 c^{2} b^{2} \arcsin (c x)^{2} \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{3}}-\frac{b^{2} \arcsin (c x)^{2}}{2 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right) x^{2}} \\
& -\frac{a b \arcsin (c x)}{d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right) x^{2}}-\frac{3 c^{4} b^{2} x^{2} \arcsin (c x)^{2}}{2 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{9 c^{2} a b \arcsin (c x)}{2 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{6 c^{2} a b \arcsin (c x) \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}} \\
& +\frac{6 c^{2} a b \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}-\frac{6 c^{2} a b \arcsin (c x) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{3}}-\frac{4 \mathrm{I} c^{2} a b}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)} \\
& -\frac{6 \mathrm{I} c^{2} a b \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}-\frac{6 \mathrm{I} c^{2} a b \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}+\frac{3 \mathrm{I} c^{2} a b \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{3}} \\
& -\frac{4 \mathrm{I} c^{2} b^{2} \arcsin (c x)}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{6 \mathrm{I} c^{2} b^{2} \arcsin (c x) \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}}-\frac{6 \mathrm{I} c^{2} b^{2} \arcsin (c x) \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{3}} \\
& +\frac{3 \mathrm{I} c^{2} b^{2} \arcsin (c x) \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{3}}-\frac{c^{4} b^{2} x^{2}}{12 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{4 c^{5} a b x^{3} \sqrt{-c^{2} x^{2}+1}}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{3 c^{4} a b x^{2} \arcsin (c x)}{d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)} \\
& -\frac{c^{3} a b x \sqrt{-c^{2} x^{2}+1}}{2 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{c a b \sqrt{-c^{2} x^{2}+1}}{d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right) x}+\frac{4 c^{5} b^{2} x^{3} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{c^{3} b^{2} x \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{2 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)} \\
& -\frac{c b^{2} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)}{d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right) x}-\frac{4 \mathrm{I} c^{6} a b x^{4}}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{8 \mathrm{I} c^{4} a b x^{2}}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}-\frac{4 \mathrm{I} c^{6} b^{2} x^{4} \arcsin (c x)}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{8 \mathrm{I} c^{4} b^{2} x^{2} \arcsin (c x)}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)} \\
& -\frac{a^{2}}{2 d^{3} x^{2}}
\end{aligned}
$$

Problem 56: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{-c^{2} d x^{2}+d}(a+b \arcsin (c x))^{2}}{x^{4}} d x
$$

Optimal(type 4, 294 leaves, 9 steps):
$-\frac{\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{3 d x^{3}}-\frac{b^{2} c^{2} \sqrt{-c^{2} d x^{2}+d}}{3 x}-\frac{b^{2} c^{3} \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{-c^{2} x^{2}+1}}+\frac{\mathrm{I} c^{3}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{-c^{2} x^{2}+1}}$
$-\frac{2 b c^{3}(a+b \arcsin (c x)) \ln \left(1-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{-c^{2} x^{2}+1}}+\frac{I b^{2} c^{3} \text { polylog }\left(2,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{-c^{2} x^{2}+1}}$
$-\frac{b c(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}{3 x^{2}}$
Result(type ?, 3016 leaves): Display of huge result suppressed!
Problem 57: Result more than twice size of optimal antiderivative.

$$
\int x\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 245 leaves, 6 steps):
$-\frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{2}}{5 c^{2} d}+\frac{16 b^{2} d \sqrt{-c^{2} d x^{2}+d}}{75 c^{2}}+\frac{8 b^{2} d\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{225 c^{2}}+\frac{2 b^{2} d\left(-c^{2} x^{2}+1\right)^{2} \sqrt{-c^{2} d x^{2}+d}}{125 c^{2}}$

$$
+\frac{2 b d x(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{5 c \sqrt{-c^{2} x^{2}+1}}-\frac{4 b c d x^{3}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{15 \sqrt{-c^{2} x^{2}+1}}+\frac{2 b c^{3} d x^{5}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{25 \sqrt{-c^{2} x^{2}+1}}
$$

Result(type 3, 1223 leaves):
$-\frac{a^{2}\left(-c^{2} d x^{2}+d\right)^{5 / 2}}{5 c^{2} d}+b^{2}\left(-\frac{1}{4000 c^{2}\left(c^{2} x^{2}-1\right)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(16 x^{6} c^{6}-28 c^{4} x^{4}-16 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}+13 c^{2} x^{2}+20 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}\right.\right.\right.$
$\left.\left.-5 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c-1\right)\left(10 \mathrm{I} \arcsin (c x)+25 \arcsin (c x)^{2}-2\right) d\right)$
$+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 c^{4} x^{4}-5 c^{2} x^{2}-4 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+3 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+1\right)\left(6 \mathrm{I} \arcsin (c x)+9 \arcsin (c x)^{2}-2\right) d}{288 c^{2}\left(c^{2} x^{2}-1\right)}$
$-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(c^{2} x^{2}-\mathrm{I} c x \sqrt{-c^{2} x^{2}+1}-1\right)\left(2 \mathrm{I} \arcsin (c x)+\arcsin (c x)^{2}-2\right) d}{16 c^{2}\left(c^{2} x^{2}-1\right)}$
$-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+c^{2} x^{2}-1\right)\left(-2 \mathrm{I} \arcsin (c x)+\arcsin (c x)^{2}-2\right) d}{16 c^{2}\left(c^{2} x^{2}-1\right)}$
$+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+4 c^{4} x^{4}-3 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c-5 c^{2} x^{2}+1\right)\left(-6 \mathrm{I} \arcsin (c x)+9 \arcsin (c x)^{2}-2\right) d}{288 c^{2}\left(c^{2} x^{2}-1\right)}$
$-\frac{1}{4000 c^{2}\left(c^{2} x^{2}-1\right)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(16 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}+16 x^{6} c^{6}-20 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}-28 c^{4} x^{4}+5 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+13 c^{2} x^{2}-1\right)(\right.$
$\left.\left.\left.-10 \mathrm{I} \arcsin (c x)+25 \arcsin (c x)^{2}-2\right) d\right)\right)+2 a b($
$-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(16 x^{6} c^{6}-28 c^{4} x^{4}-16 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}+13 c^{2} x^{2}+20 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}-5 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c-1\right)(\mathrm{I}+5 \arcsin (c x)) d}{800\left(c^{2} x^{2}-1\right) c^{2}}$

```
\(+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 c^{4} x^{4}-5 c^{2} x^{2}-4 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+3 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+1\right)(\mathrm{I}+3 \arcsin (c x)) d}{96\left(c^{2} x^{2}-1\right) c^{2}}\)
\(-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(c^{2} x^{2}-\mathrm{I} c x \sqrt{-c^{2} x^{2}+1}-1\right)(\arcsin (c x)+\mathrm{I}) d}{16\left(c^{2} x^{2}-1\right) c^{2}}-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+c^{2} x^{2}-1\right)(\arcsin (c x)-\mathrm{I}) d}{16\left(c^{2} x^{2}-1\right) c^{2}}\)
\(+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+4 c^{4} x^{4}-3 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c-5 c^{2} x^{2}+1\right)(-\mathrm{I}+3 \arcsin (c x)) d}{96\left(c^{2} x^{2}-1\right) c^{2}}\)
\(\left.-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(16 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}+16 x^{6} c^{6}-20 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}-28 c^{4} x^{4}+5 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+13 c^{2} x^{2}-1\right)(-\mathrm{I}+5 \arcsin (c x)) d}{800\left(c^{2} x^{2}-1\right) c^{2}}\right)\)
```

Problem 58: Result more than twice size of optimal antiderivative.

$$
\int\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 265 leaves, 10 steps):
$\frac{x\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{4}-\frac{17 b^{2} d x \sqrt{-c^{2} d x^{2}+d}}{64}+\frac{b^{2} c^{2} d x^{3} \sqrt{-c^{2} d x^{2}+d}}{32}+\frac{3 d x(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{8}$

$$
+\frac{17 b^{2} d \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{64 c \sqrt{-c^{2} x^{2}+1}}-\frac{5 b c d x^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{8 \sqrt{-c^{2} x^{2}+1}}+\frac{b c^{3} d x^{4}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{8 \sqrt{-c^{2} x^{2}+1}}
$$

$$
+\frac{d(a+b \arcsin (c x))^{3} \sqrt{-c^{2} d x^{2}+d}}{8 b c \sqrt{-c^{2} x^{2}+1}}
$$

Result(type 3, 819 leaves):
$\frac{x\left(-c^{2} d x^{2}+d\right)^{3 / 2} a^{2}}{4}+\frac{3 a^{2} d x \sqrt{-c^{2} d x^{2}+d}}{8}+\frac{3 a^{2} d^{2} \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{8 \sqrt{c^{2} d}}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d c^{4} x^{5}}{32\left(c^{2} x^{2}-1\right)}-\frac{19 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d c^{2} x^{3}}{64\left(c^{2} x^{2}-1\right)}$

$$
\begin{aligned}
& +\frac{17 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d x}{64\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{3} d}{8 c\left(c^{2} x^{2}-1\right)}-\frac{17 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{64 c\left(c^{2} x^{2}-1\right)} \\
& +\frac{5 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d c \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{2}}{8\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d c^{3} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{4}}{8\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d c^{4} \arcsin (c x)^{2} x^{5}}{4\left(c^{2} x^{2}-1\right)} \\
& +\frac{7 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d c^{2} \arcsin (c x)^{2} x^{3}}{8\left(c^{2} x^{2}-1\right)}-\frac{5 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d \arcsin (c x)^{2} x}{8\left(c^{2} x^{2}-1\right)}-\frac{3 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{2} d}{8 c\left(c^{2} x^{2}-1\right)} \\
& -\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d c^{4} \arcsin (c x) x^{5}}{2\left(c^{2} x^{2}-1\right)}+\frac{7 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d c^{2} \arcsin (c x) x^{3}}{4\left(c^{2} x^{2}-1\right)}-\frac{17 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d \sqrt{-c^{2} x^{2}+1}}{64 c\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

$-\frac{5 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d \arcsin (c x) x}{4\left(c^{2} x^{2}-1\right)}-\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d c^{3} \sqrt{-c^{2} x^{2}+1} x^{4}}{8\left(c^{2} x^{2}-1\right)}+\frac{5 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d c \sqrt{-c^{2} x^{2}+1} x^{2}}{8\left(c^{2} x^{2}-1\right)}$

Problem 59: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 4, 372 leaves, 16 steps):
$-\frac{\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{3 x^{3}}-\frac{b^{2} c^{2} d \sqrt{-c^{2} d x^{2}+d}}{3 x}+\frac{c^{2} d(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{x}-\frac{b^{2} c^{3} d \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{-c^{2} x^{2}+1}}$
$+\frac{4 \mathrm{I} c^{3} d(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{-c^{2} x^{2}+1}}+\frac{c^{3} d(a+b \arcsin (c x))^{3} \sqrt{-c^{2} d x^{2}+d}}{3 b \sqrt{-c^{2} x^{2}+1}}$
$-\frac{8 b c^{3} d(a+b \arcsin (c x)) \ln \left(1-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{-c^{2} x^{2}+1}}+\frac{4 \mathrm{I} b^{2} c^{3} d \operatorname{polylog}\left(2,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{-c^{2} x^{2}+1}}$
$-\frac{b c d(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}{3 x^{2}}$
Result(type ?, 3280 leaves): Display of huge result suppressed!
Problem 60: Result more than twice size of optimal antiderivative.

$$
\int x\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 338 leaves, 6 steps):

$$
\begin{aligned}
& -\frac{\left(-c^{2} d x^{2}+d\right)^{7 / 2}(a+b \arcsin (c x))^{2}}{7 c^{2} d}+\frac{32 b^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}{245 c^{2}}+\frac{16 b^{2} d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{735 c^{2}}+\frac{12 b^{2} d^{2}\left(-c^{2} x^{2}+1\right)^{2} \sqrt{-c^{2} d x^{2}+d}}{1225 c^{2}} \\
& +\frac{2 b^{2} d^{2}\left(-c^{2} x^{2}+1\right)^{3} \sqrt{-c^{2} d x^{2}+d}}{343 c^{2}}+\frac{2 b d^{2} x(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{7 c \sqrt{-c^{2} x^{2}+1}}-\frac{2 b c d^{2} x^{3}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{7 \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{6 b c^{3} d^{2} x^{5}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{35 \sqrt{-c^{2} x^{2}+1}}-\frac{2 b c^{5} d^{2} x^{7}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{49 \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type 3, 1887 leaves):

$$
\begin{aligned}
& -\frac{a^{2}\left(-c^{2} d x^{2}+d\right)^{7 / 2}}{7 c^{2} d}+b^{2}\left(\frac { 1 } { 4 3 9 0 4 c ^ { 2 } (c ^ { 2 } x ^ { 2 } - 1) } \left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(64 x^{8} c^{8}-144 x^{6} c^{6}-64 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{7} c^{7}+104 c^{4} x^{4}+112 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}\right.\right.\right. \\
& \left.\left.-25 c^{2} x^{2}-56 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+7 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+1\right)\left(14 \mathrm{I} \arcsin (c x)+49 \arcsin (c x)^{2}-2\right) d^{2}\right)
\end{aligned}
$$

$-\frac{1}{3200 c^{2}\left(c^{2} x^{2}-1\right)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(16 x^{6} c^{6}-28 c^{4} x^{4}-16 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}+13 c^{2} x^{2}+20 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}-5 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c\right.\right.$
$\left.-1)\left(10 \mathrm{I} \arcsin (c x)+25 \arcsin (c x)^{2}-2\right) d^{2}\right)$
$+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 c^{4} x^{4}-5 c^{2} x^{2}-4 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+3 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+1\right)\left(6 \mathrm{I} \arcsin (c x)+9 \arcsin (c x)^{2}-2\right) d^{2}}{384 c^{2}\left(c^{2} x^{2}-1\right)}$
$-\frac{5 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(c^{2} x^{2}-\mathrm{I} c x \sqrt{-c^{2} x^{2}+1}-1\right)\left(2 \operatorname{Iarcsin}(c x)+\arcsin (c x)^{2}-2\right) d^{2}}{128 c^{2}\left(c^{2} x^{2}-1\right)}$
$-\frac{5 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+c^{2} x^{2}-1\right)\left(-2 \operatorname{Iarcsin}(c x)+\arcsin (c x)^{2}-2\right) d^{2}}{128 c^{2}\left(c^{2} x^{2}-1\right)}$
$+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+4 c^{4} x^{4}-3 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c-5 c^{2} x^{2}+1\right)\left(-6 \mathrm{I} \arcsin (c x)+9 \arcsin (c x)^{2}-2\right) d^{2}}{384 c^{2}\left(c^{2} x^{2}-1\right)}$
$-\frac{1}{3200 c^{2}\left(c^{2} x^{2}-1\right)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(16 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}+16 x^{6} c^{6}-20 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}-28 c^{4} x^{4}+5 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+13 c^{2} x^{2}-1\right)(\right.$
$\left.\left.-10 \mathrm{I} \arcsin (c x)+25 \arcsin (c x)^{2}-2\right) d^{2}\right)+\frac{1}{43904 c^{2}\left(c^{2} x^{2}-1\right)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(64 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{7} c^{7}+64 x^{8} c^{8}-112 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}\right.\right.$
$\left.\left.\left.-144 x^{6} c^{6}+56 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+104 c^{4} x^{4}-7 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c-25 c^{2} x^{2}+1\right)\left(-14 \mathrm{I} \arcsin (c x)+49 \arcsin (c x)^{2}-2\right) d^{2}\right)\right)$
$+2 a b\left(\frac{1}{6272 c^{2}\left(c^{2} x^{2}-1\right)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(64 x^{8} c^{8}-144 x^{6} c^{6}-64 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{7} c^{7}+104 c^{4} x^{4}+112 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}-25 c^{2} x^{2}\right.\right.\right.$
$\left.\left.-56 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+7 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+1\right)(\mathrm{I}+7 \arcsin (c x)) d^{2}\right)$
$-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(16 x^{6} c^{6}-28 c^{4} x^{4}-16 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}+13 c^{2} x^{2}+20 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}-5 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c-1\right)(\mathrm{I}+5 \arcsin (c x)) d^{2}}{640 c^{2}\left(c^{2} x^{2}-1\right)}$
$+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 c^{4} x^{4}-5 c^{2} x^{2}-4 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+3 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+1\right)(\mathrm{I}+3 \arcsin (c x)) d^{2}}{128 c^{2}\left(c^{2} x^{2}-1\right)}$
$-\frac{5 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(c^{2} x^{2}-\mathrm{I} c x \sqrt{-c^{2} x^{2}+1}-1\right)(\arcsin (c x)+\mathrm{I}) d^{2}}{128 c^{2}\left(c^{2} x^{2}-1\right)}-\frac{5 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+c^{2} x^{2}-1\right)(\arcsin (c x)-\mathrm{I}) d^{2}}{128 c^{2}\left(c^{2} x^{2}-1\right)}$
$+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+4 c^{4} x^{4}-3 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c-5 c^{2} x^{2}+1\right)(-\mathrm{I}+3 \arcsin (c x)) d^{2}}{128 c^{2}\left(c^{2} x^{2}-1\right)}$
$-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(16 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}+16 x^{6} c^{6}-20 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}-28 c^{4} x^{4}+5 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+13 c^{2} x^{2}-1\right)(-\mathrm{I}+5 \arcsin (c x)) d^{2}}{640 c^{2}\left(c^{2} x^{2}-1\right)}$

$$
\begin{aligned}
& +\frac{1}{6272 c^{2}\left(c^{2} x^{2}-1\right)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(64 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{7} c^{7}+64 x^{8} c^{8}-112 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}-144 x^{6} c^{6}+56 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}+104 c^{4} x^{4}\right.\right. \\
& \left.\left.\left.-7 \mathrm{I} \sqrt{-c^{2} x^{2}+1} x c-25 c^{2} x^{2}+1\right)(-\mathrm{I}+7 \arcsin (c x)) d^{2}\right)\right)
\end{aligned}
$$

Problem 61: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{2}}{x} \mathrm{~d} x
$$

Optimal(type 4, 657 leaves, 23 steps):
$\frac{d\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{3}+\frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{2}}{5}-\frac{598 b^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}{225}-\frac{74 b^{2} d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{675}$

$$
-\frac{2 b^{2} d^{2}\left(-c^{2} x^{2}+1\right)^{2} \sqrt{-c^{2} d x^{2}+d}}{125}+d^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}-\frac{2 a b c d^{2} x \sqrt{-c^{2} d x^{2}+d}}{\sqrt{-c^{2} x^{2}+1}}-\frac{2 b^{2} c d^{2} x \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{-c^{2} x^{2}+1}}
$$

$$
-\frac{16 b c d^{2} x(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{15 \sqrt{-c^{2} x^{2}+1}}+\frac{22 b c^{3} d^{2} x^{3}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{45 \sqrt{-c^{2} x^{2}+1}}-\frac{2 b c^{5} d^{2} x^{5}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{25 \sqrt{-c^{2} x^{2}+1}}
$$

$$
-\frac{2 d^{2}(a+b \arcsin (c x))^{2} \operatorname{arctanh}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{-c^{2} x^{2}+1}}+\frac{2 \mathrm{I} b d^{2}(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{-c^{2} x^{2}+1}}
$$

$$
\sqrt{-c^{2} x^{2}+1} \quad \sqrt{-c^{2} x^{2}+1}
$$

$$
+\frac{2 b^{2} d^{2} \operatorname{polylog}\left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{-c^{2} x^{2}+1}}
$$

Result(type 4, 1573 leaves):
$\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}}{25\left(c^{2} x^{2}-1\right)}-\frac{2 \mathrm{I} a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} d^{2} \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1}$

$$
+\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \sqrt{-c^{2} x^{2}+1} x^{5} c^{5}}{25\left(c^{2} x^{2}-1\right)}-\frac{22 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}}{45\left(c^{2} x^{2}-1\right)}+\frac{46 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \sqrt{-c^{2} x^{2}+1} x c}{15\left(c^{2} x^{2}-1\right)}
$$

$$
-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} d^{2} \arcsin (c x) \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1}
$$

$$
+\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} d^{2} \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1}+\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \arcsin (c x) x^{6} c^{6}}{5\left(c^{2} x^{2}-1\right)}
$$

$$
\begin{aligned}
& -\frac{28 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \arcsin (c x) x^{4} c^{4}}{15\left(c^{2} x^{2}-1\right)}+\frac{68 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} c^{2} x^{2} \arcsin (c x)}{15\left(c^{2} x^{2}-1\right)} \\
& +\frac{2 \mathrm{I} a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} d^{2} \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1}-\frac{23 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \arcsin (c x)^{2}}{15\left(c^{2} x^{2}-1\right)} \\
& -\frac{22 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}}{45\left(c^{2} x^{2}-1\right)}+\frac{46 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x c}{15\left(c^{2} x^{2}-1\right)} \\
& +\frac{2 \mathrm{I} b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} d^{2} \arcsin (c x) \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1} \\
& -\frac{2 \mathrm{I} b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} d^{2} \arcsin (c x) \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1} \\
& -\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} d^{2} \arcsin (c x)^{2} \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1} \\
& +\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} d^{2} \arcsin (c x)^{2} \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \arcsin (c x)^{2} x^{6} c^{6}}{5\left(c^{2} x^{2}-1\right)} \\
& -\frac{14 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \arcsin (c x)^{2} x^{4} c^{4}}{15\left(c^{2} x^{2}-1\right)}+\frac{34 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \arcsin (c x)^{2} x^{2} c^{2}}{15\left(c^{2} x^{2}-1\right)} \\
& -\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} d^{2} \operatorname{polylog}\left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1}+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} d^{2} \operatorname{polylog}\left(3,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1} \\
& -\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x^{6} c^{6}}{125\left(c^{2} x^{2}-1\right)}+\frac{532 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x^{4} c^{4}}{3375\left(c^{2} x^{2}-1\right)}-\frac{9872 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} c^{2} x^{2}}{3375\left(c^{2} x^{2}-1\right)}-\frac{46 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \arcsin (c x)}{15\left(c^{2} x^{2}-1\right)} \\
& 3
\end{aligned}+\frac{a^{2} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{3}-a^{2} d^{5} / 2 \ln \left(\frac{\left.2 d+2 \sqrt{d} \sqrt{-c^{2} d x^{2}+d}\right)+a^{2} \sqrt{-c^{2} d x^{2}+d} d^{2}+\frac{\left(-c^{2} d x^{2}+d\right)^{5} / 2 a^{2}}{5}+\frac{9394 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2}}{3375\left(c^{2} x^{2}-1\right)}}{+\frac{1}{x}}\right.
$$

Problem 62: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{2}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 521 leaves, 23 steps):
$-\frac{5 c^{2} d x\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{4}-\frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{2}}{x}+\frac{31 b^{2} c^{2} d^{2} x \sqrt{-c^{2} d x^{2}+d}}{64}$

$$
+\frac{b^{2} c^{2} d^{2} x\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{32}-\frac{b c d^{2}\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{8}-\frac{15 c^{2} d^{2} x(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{8}
$$

```
\(-\frac{89 b^{2} c d^{2} \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{6 \sqrt{-c^{2}+1}}+\frac{15 b c^{3} d^{2} x^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{-c^{2}+1}}-\frac{\mathrm{I} c d^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{\sqrt{-c^{2}+1}}\)
    \(64 \sqrt{-c^{2} x^{2}+1} \quad 8 \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} x^{2}+1}\)
\(-\frac{5 c d^{2}(a+b \arcsin (c x))^{3} \sqrt{-c^{2} d x^{2}+d}}{8 b \sqrt{-c^{2} x^{2}+1}}+\frac{2 b c d^{2}(a+b \arcsin (c x)) \ln \left(1-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{-c^{2} x^{2}+1}}\)
\(-\frac{\mathrm{I} b^{2} c d^{2} \operatorname{polylog}\left(2,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{-c^{2} x^{2}+1}}+b c d^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}\)
```

Result(type 4, 1445 leaves):

```
\(-\frac{15 a^{2} c^{2} d^{3} \arctan \left(\frac{\sqrt{c^{2} d} x}{\sqrt{-c^{2} d x^{2}+d}}\right)}{8 \sqrt{c^{2} d}}-\frac{15 a^{2} c^{2} d^{2} x \sqrt{-c^{2} d x^{2}+d}}{8}-\frac{a^{2}\left(-c^{2} d x^{2}+d\right)^{7 / 2}}{d x}-a^{2} c^{2} x\left(-c^{2} d x^{2}+d\right)^{5 / 2}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{6} d^{2} x^{5}}{32\left(c^{2} x^{2}-1\right)}\)
\(+\frac{35 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{4} d^{2} x^{3}}{64\left(c^{2} x^{2}-1\right)}-\frac{33 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} d^{2} x}{64\left(c^{2} x^{2}-1\right)}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)^{2} d^{2}}{\left(c^{2} x^{2}-1\right) x}\)
\(+\frac{2 I b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c d^{2} \sqrt{-c^{2} x^{2}+1} \text { polylog }\left(2,-I c x-\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1}+\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) d^{2}}{\left(c^{2} x^{2}-1\right) x}\)
\(+\frac{33 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} c d^{2} \sqrt{-c^{2} x^{2}+1}}{64\left(c^{2} x^{2}-1\right)}+\frac{5 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{3} c d^{2}}{8\left(c^{2} x^{2}-1\right)}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{6} d^{2} \arcsin (c x)^{2} x^{5}}{4\left(c^{2} x^{2}-1\right)}\)
\(-\frac{11 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{4} d^{2} \arcsin (c x)^{2} x^{3}}{8\left(c^{2} x^{2}-1\right)}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} d^{2} \arcsin (c x)^{2} x}{8\left(c^{2} x^{2}-1\right)}+\frac{33 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c d^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{64\left(c^{2} x^{2}-1\right)}\)
\(+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{5} d^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{4}}{8\left(c^{2} x^{2}-1\right)}-\frac{9 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{3} d^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{2}}{8\left(c^{2} x^{2}-1\right)}\)
\(-\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c d^{2} \sqrt{-c^{2} x^{2}+1} \arcsin (c x) \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1}\)
\(-\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c d^{2} \sqrt{-c^{2} x^{2}+1} \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1}+\frac{\mathrm{I} b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c d^{2} \arcsin (c x)^{2} \sqrt{-c^{2} x^{2}+1}}{c^{2} x^{2}-1}\)
\(+\frac{2 I b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c d^{2} \sqrt{-c^{2} x^{2}+1} \text { polylog }\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c^{2} x^{2}-1}+\frac{15 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{2} c d^{2}}{8\left(c^{2} x^{2}-1\right)}\)
\(+\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{6} d^{2} \arcsin (c x) x^{5}}{2\left(c^{2} x^{2}-1\right)}-\frac{11 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{4} d^{2} \arcsin (c x) x^{3}}{4\left(c^{2} x^{2}-1\right)}+\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} d^{2} \arcsin (c x) x}{4\left(c^{2} x^{2}-1\right)}\)
\(-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \ln \left(\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}-1\right) c d^{2}}{c^{2} x^{2}-1}+\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{5} d^{2} \sqrt{-c^{2} x^{2}+1} x^{4}}{8\left(c^{2} x^{2}-1\right)}\)
```

$-\frac{9 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{3} d^{2} \sqrt{-c^{2} x^{2}+1} x^{2}}{8\left(c^{2} x^{2}-1\right)}+\frac{2 \mathrm{I} a b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) c d^{2}}{c^{2} x^{2}-1}-\frac{5 a^{2} c^{2} d x\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{4}$

Problem 63: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{2}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 4, 541 leaves, 27 steps):
$\frac{5 c^{2} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{3 x}-\frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{2}}{3 x^{3}}-\frac{7 b^{2} c^{4} d^{2} x \sqrt{-c^{2} d x^{2}+d}}{12}-\frac{b^{2} c^{2} d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{3 x}$

$$
-\frac{b c d^{2}\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{3 x^{2}}+\frac{5 c^{4} d^{2} x(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2}+\frac{23 b^{2} c^{3} d^{2} \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{12 \sqrt{-c^{2} x^{2}+1}}
$$

$$
-\frac{5 b c^{5} d^{2} x^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{2 \sqrt{-c^{2} x^{2}+1}}+\frac{7 \mathrm{I} c^{3} d^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{-c^{2} x^{2}+1}}+\frac{5 c^{3} d^{2}(a+b \arcsin (c x))^{3} \sqrt{-c^{2} d x^{2}+d}}{6 b \sqrt{-c^{2} x^{2}+1}}
$$

$$
-\frac{14 b c^{3} d^{2}(a+b \arcsin (c x)) \ln \left(1-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{-c^{2} x^{2}+1}}+\frac{7 \mathrm{I} b^{2} c^{3} d^{2} \operatorname{polylog}\left(2,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{-c^{2} x^{2}+1}}
$$

$$
3 \sqrt{-c^{2} x^{2}+1}
$$

$3 \sqrt{-c^{2} x^{2}+1}$
$-\frac{7 b c^{3} d^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}{3}$
Result(type ?, 3854 leaves): Display of huge result suppressed!
Problem 64: Result more than twice size of optimal antiderivative.

$$
\int \frac{x(a+b \arcsin (c x))^{2}}{\sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 3, 134 leaves, 4 steps):

$$
\frac{2 b^{2}\left(-c^{2} x^{2}+1\right)}{c^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{2 a b x \sqrt{-c^{2} x^{2}+1}}{c \sqrt{-c^{2} d x^{2}+d}}+\frac{2 b^{2} x \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{c \sqrt{-c^{2} d x^{2}+d}}-\frac{(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{c^{2} d}
$$

Result(type 3, 315 leaves):
$-\frac{a^{2} \sqrt{-c^{2} d x^{2}+d}}{c^{2} d}+b^{2}\left(-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(c^{2} x^{2}-\mathrm{I} c x \sqrt{-c^{2} x^{2}+1}-1\right)\left(2 \mathrm{I} \arcsin (c x)+\arcsin (c x)^{2}-2\right)}{2 c^{2} d\left(c^{2} x^{2}-1\right)}\right.$
$\left.-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+c^{2} x^{2}-1\right)\left(-2 \mathrm{I} \arcsin (c x)+\arcsin (c x)^{2}-2\right)}{2 c^{2} d\left(c^{2} x^{2}-1\right)}\right)+2 a b($
$\left.-\frac{(\arcsin (c x)+\mathrm{I}) \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(c^{2} x^{2}-\mathrm{I} c x \sqrt{-c^{2} x^{2}+1}-1\right)}{2 c^{2} d\left(c^{2} x^{2}-1\right)}-\frac{(\arcsin (c x)-\mathrm{I}) \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+c^{2} x^{2}-1\right)}{2 c^{2} d\left(c^{2} x^{2}-1\right)}\right)$

Problem 65: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{\sqrt{-c^{2} d x^{2}+d}} d x
$$

Optimal(type 3, 43 leaves, 1 step):

$$
\frac{(a+b \arcsin (c x))^{3} \sqrt{-c^{2} x^{2}+1}}{3 b c \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 3, 142 leaves):

$$
\frac{a^{2} \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{\sqrt{c^{2} d}}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{3}}{3 c\left(c^{2} x^{2}-1\right) d}-\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{2}}{c\left(c^{2} x^{2}-1\right) d}
$$

Problem 66: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{x^{3} \sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 4, 406 leaves, 13 steps):

$$
\begin{aligned}
& -\frac{b c(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{x \sqrt{-c^{2} d x^{2}+d}}-\frac{c^{2}(a+b \arcsin (c x))^{2} \operatorname{arctanh}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{\sqrt{-c^{2} d x^{2}+d}}-\frac{b^{2} c^{2} \operatorname{arctanh}\left(\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{\sqrt{-c^{2} d x^{2}+d}} \\
& +\frac{\mathrm{I} b c^{2}(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{\sqrt{-c^{2} d x^{2}+d}}-\frac{\mathrm{I} b c^{2}(a+b \arcsin (c x)) \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{\sqrt{-c^{2} d x^{2}+d}} \\
& -\frac{b^{2} c^{2} \operatorname{polylog}\left(3,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{\sqrt{-c^{2} d x^{2}+d}}+\frac{b^{2} c^{2} \operatorname{polylog}\left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{\sqrt{-c^{2} d x^{2}+d}}-\frac{(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2 d x^{2}}
\end{aligned}
$$

Result(type 4, 1106 leaves):

$$
\begin{aligned}
& -\frac{a^{2} \sqrt{-c^{2} d x^{2}+d}}{2 d x^{2}}-\frac{a^{2} c^{2} \ln \left(\frac{2 d+2 \sqrt{d} \sqrt{-c^{2} d x^{2}+d}}{x}\right)}{2 \sqrt{d}}-\frac{b^{2} \arcsin (c x)^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2}}{2 d\left(c^{2} x^{2}-1\right)}+\frac{b^{2} \arcsin (c x) \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c}{x d\left(c^{2} x^{2}-1\right)} \\
& +\frac{b^{2} \arcsin (c x)^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)}}{2 x^{2} d\left(c^{2} x^{2}-1\right)}+\frac{\mathrm{I} a b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d\left(c^{2} x^{2}-1\right)} \\
& -\frac{\mathrm{I} b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c^{2} \arcsin (c x) \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d\left(c^{2} x^{2}-1\right)} \\
& -\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c^{2} \arcsin (c x)^{2} \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{2 d\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

```
\(+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c^{2} \arcsin (c x)^{2} \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{2 d\left(c^{2} x^{2}-1\right)}+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c^{2} \operatorname{arctanh}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d\left(c^{2} x^{2}-1\right)}\)
\(-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c^{2} \text { polylog }\left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d\left(c^{2} x^{2}-1\right)}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c^{2} \text { polylog }\left(3,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d\left(c^{2} x^{2}-1\right)}\)
\(-\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) c^{2}}{d\left(c^{2} x^{2}-1\right)}+\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c}{x d\left(c^{2} x^{2}-1\right)}+\frac{a b \arcsin (c x) \sqrt{-d\left(c^{2} x^{2}-1\right)}}{x^{2} d\left(c^{2} x^{2}-1\right)}\)
\(-\frac{a b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \arcsin (c x) \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d\left(c^{2} x^{2}-1\right)}\)
\(+\frac{a b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d\left(c^{2} x^{2}-1\right)}-\frac{\mathrm{I} a b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d\left(c^{2} x^{2}-1\right)}\)
\(+\frac{\mathrm{I} b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} c^{2} \arcsin (c x) \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d\left(c^{2} x^{2}-1\right)}\)
```

Problem 67: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{x^{4} \sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 4, 301 leaves, 9 steps):

```
\(-\frac{b^{2} c^{2}\left(-c^{2} x^{2}+1\right)}{3 x \sqrt{-c^{2} d x^{2}+d}}-\frac{b c(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{3 x^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{2 \mathrm{I} c^{3}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{3 \sqrt{-c^{2} d x^{2}+d}}\)
    \(+\frac{4 b c^{3}(a+b \arcsin (c x)) \ln \left(1-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{3 \sqrt{-c^{2} d x^{2}+d}}-\frac{2 \mathrm{I} b^{2} c^{3} \operatorname{polylog}\left(2,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{3 \sqrt{-c^{2} d x^{2}+d}}\)
    \(-\frac{(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{3 d x^{3}}-\frac{2 c^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{3 d x}\)
Result(type ?, 2319 leaves): Display of huge result suppressed!
Problem 68: Result more than twice size of optimal antiderivative.
```

$$
\int \frac{x^{2}(a+b \arcsin (c x))^{2}}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 248 leaves, 7 steps):

$$
\frac{x(a+b \arcsin (c x))^{2}}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{\mathrm{I}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{c^{3} d \sqrt{-c^{2} d x^{2}+d}}-\frac{(a+b \arcsin (c x))^{3} \sqrt{-c^{2} x^{2}+1}}{3 b c^{3} d \sqrt{-c^{2} d x^{2}+d}}
$$

$$
+\frac{2 b(a+b \arcsin (c x)) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{c^{3} d \sqrt{-c^{2} d x^{2}+d}}-\frac{\mathrm{I} b^{2} \text { polylog }\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{c^{3} d \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 4, 580 leaves):

$$
\begin{aligned}
& \frac{a^{2} x}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{a^{2} \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{c^{2} d \sqrt{c^{2} d}}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{3}}{3 d^{2} c^{3}\left(c^{2} x^{2}-1\right)}+\frac{\mathrm{I} b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)^{2} \sqrt{-c^{2} x^{2}+1}}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)} \\
& -\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)^{2} x}{d^{2} c^{2}\left(c^{2} x^{2}-1\right)}-\frac{2 b^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)} \\
& \quad+\frac{\mathrm{I} b^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)}+\frac{a b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)^{2}}{c^{3}\left(c^{2} x^{2}-1\right) d^{2}} \\
& \quad+\frac{2 \mathrm{I} a b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{c^{3}\left(c^{2} x^{2}-1\right) d^{2}}-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}} \\
& \quad-\frac{2 a b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{c^{3}\left(c^{2} x^{2}-1\right) d^{2}}
\end{aligned}
$$

Problem 69: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{x\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 490 leaves, 15 steps):
$\frac{(a+b \arcsin (c x))^{2}}{d \sqrt{-c^{2} d x^{2}+d}}+\frac{4 \mathrm{I} b(a+b \arcsin (c x)) \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{d \sqrt{-c^{2} d x^{2}+d}}-\frac{2(a+b \arcsin (c x))^{2} \operatorname{arctanh}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{d \sqrt{-c^{2} d x^{2}+d}}$

$$
\begin{aligned}
& +\frac{2 \mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{d \sqrt{-c^{2} d x^{2}+d}}-\frac{2 \mathrm{I} b^{2} \operatorname{polylog}\left(2,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right) \sqrt{-c^{2} x^{2}+1}}{d \sqrt{-c^{2} d x^{2}+d}} \\
& +\frac{2 \mathrm{I} b^{2} \operatorname{polylog}\left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right) \sqrt{-c^{2} x^{2}+1}}{d \sqrt{-c^{2} d x^{2}+d}}-\frac{2 \mathrm{I} b(a+b \arcsin (c x)) \operatorname{poly} \log \left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{d \sqrt{-c^{2} d x^{2}+d}} \\
& -\frac{2 b^{2} \operatorname{polylog}\left(3,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{d \sqrt{-c^{2} d x^{2}+d}}+\frac{2 b^{2} \operatorname{polylog}\left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{d \sqrt{-c^{2} d x^{2}+d}}
\end{aligned}
$$

Result(type 4, 1095 leaves):

$$
\begin{aligned}
& \frac{a^{2}}{d \sqrt{-c^{2} d x^{2}+d}}-\frac{a^{2} \ln \left(\frac{2 d+2 \sqrt{d} \sqrt{-c^{2} d x^{2}+d}}{x}\right)}{d^{3 / 2}}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)^{2}}{d^{2}\left(c^{2} x^{2}-1\right)} \\
& \\
& -\frac{b^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)^{2} \ln \left(1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}\left(c^{2} x^{2}-1\right)}+\frac{b^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)^{2} \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}\left(c^{2} x^{2}-1\right)} \\
& \\
& -\frac{2 b^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) \ln \left(1+\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}\left(c^{2} x^{2}-1\right)} \\
& \\
& +\frac{2 b^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) \ln \left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}\left(c^{2} x^{2}-1\right)}-\frac{2 b^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{polylog}\left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}\left(c^{2} x^{2}-1\right)} \\
& \\
& +\frac{2 b^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{polylog}\left(3,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}\left(c^{2} x^{2}-1\right)}-\frac{2 \mathrm{I} a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \operatorname{dilog}\left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}\left(c^{2} x^{2}-1\right)} \\
& \\
& -\frac{2 \mathrm{I} b^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}\left(c^{2} x^{2}-1\right)}-\frac{4 \mathrm{I} a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}\left(c^{2} x^{2}-1\right)} \\
& \\
& +\frac{2 \mathrm{I} b^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{dilog}\left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{d^{2}\left(c^{2} x^{2}-1\right)}-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arcsin(cx)}}{d^{2}\left(c^{2} x^{2}-1\right)} \\
& \\
& +\frac{2 \mathrm{I} b^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{\left.-d x^{2}-1\right)} \operatorname{arcsin(cx)\operatorname {polylog}(2,\mathrm {I}cx+\sqrt {-c^{2}x^{2}+1})}}{d^{2}\left(c^{2} x^{2}-1\right)} \\
& \\
& +\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x) \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}\left(c^{2} x^{2}-1\right)} \\
& d^{2}\left(c^{2} x^{2}-1\right)
\end{aligned}
$$

Problem 70: Result more than twice size of optimal antiderivative.

$$
\int \frac{x(a+b \arcsin (c x))^{2}}{\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 281 leaves, 9 steps):

$$
\begin{aligned}
& \frac{(a+b \arcsin (c x))^{2}}{3 c^{2} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{b^{2}}{3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{b x(a+b \arcsin (c x))}{3 c d^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}+\frac{2 \mathrm{I} b(a+b \arcsin (c x)) \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}} \\
& \left.\left.\quad-\frac{\mathrm{I} b^{2} \operatorname{polylog}\left(2,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right.\right.}{}\right)\right) \sqrt{-c^{2} x^{2}+1} \\
& 3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}
\end{aligned} \frac{\mathrm{I} b^{2} \operatorname{polylog}\left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right) \sqrt{-c^{2} x^{2}+1}}{3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}} .
$$

Result(type 4, 761 leaves):

$$
\begin{aligned}
& \frac{a^{2}}{3 c^{2} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right) c}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{2}}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right)}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)^{2}}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right) c^{2}} \\
& +\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)}}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right) c^{2}}+\frac{\mathrm{I} b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \operatorname{dilog}\left(1+\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{3 d^{3}\left(c^{2} x^{2}-1\right) c^{2}} \\
& -\frac{\mathrm{I} b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \operatorname{dilog}\left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{3 d^{3}\left(c^{2} x^{2}-1\right) c^{2}}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x) \ln \left(1+\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{3 d^{3}\left(c^{2} x^{2}-1\right) c^{2}} \\
& +\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x) \ln \left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{3 d^{3}\left(c^{2} x^{2}-1\right) c^{2}}-\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} x}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right) c} \\
& +\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{3 d^{3}\left(c^{4} x^{4}-2 c^{2} x^{2}+1\right) c^{2}}+\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}+\mathrm{I}\right)}{3 d^{3}\left(c^{2} x^{2}-1\right) c^{2}} \\
& -\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}-\mathrm{I}\right)}{3 d^{3}\left(c^{2} x^{2}-1\right) c^{2}}
\end{aligned}
$$

Problem 71: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 293 leaves, 9 steps):

$$
\begin{aligned}
& \frac{x(a+b \arcsin (c x))^{2}}{3 d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{b^{2} x}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{2 x(a+b \arcsin (c x))^{2}}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{b(a+b \arcsin (c x))}{3 c d^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}-\frac{2 \mathrm{I}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{3 c d^{2} \sqrt{-c^{2} d x^{2}+d}} \\
& \quad+\frac{4 b(a+b \arcsin (c x)) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{3 c d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{2 \mathrm{I} b^{2} \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{3 c d^{2} \sqrt{-c^{2} d x^{2}+d}}
\end{aligned}
$$

Result(type ?, 2895 leaves): Display of huge result suppressed!
Problem 74: Unable to integrate problem.

$$
\int x^{m}\left(-c^{2} d x^{2}+d\right)(a+b \arcsin (c x))^{2} \mathrm{~d} x
$$

Optimal(type 5, 333 leaves, 6 steps):

$$
\begin{gathered}
\frac{2 b^{2} c^{2} d x^{3+m}}{(3+m)^{3}}+\frac{2 d x^{1+m}(a+b \arcsin (c x))^{2}}{m^{2}+4 m+3}+\frac{d x^{1+m}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{3+m} \\
-\frac{2 b c d x^{2+m}(a+b \arcsin (c x)) \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right], c^{2} x^{2}\right)}{(2+m)(3+m)^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& -\frac{4 b c d x^{2+m}(a+b \arcsin (c x)) \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right], c^{2} x^{2}\right)}{m^{3}+6 m^{2}+11 m+6} \\
& +\frac{2 b^{2} c^{2} d x^{3+m} \text { HypergeometricPFQ }\left(\left[1, \frac{3}{2}+\frac{m}{2}, \frac{3}{2}+\frac{m}{2}\right],\left[2+\frac{m}{2}, \frac{5}{2}+\frac{m}{2}\right], c^{2} x^{2}\right)}{(2+m)(3+m)^{3}} \\
& +\frac{4 b^{2} c^{2} d x^{3+m} \text { HypergeometricPFQ }\left(\left[1, \frac{3}{2}+\frac{m}{2}, \frac{3}{2}+\frac{m}{2}\right],\left[2+\frac{m}{2}, \frac{5}{2}+\frac{m}{2}\right], c^{2} x^{2}\right)}{(3+m)^{2}\left(m^{2}+3 m+2\right)}-\frac{2 b c d x^{2}+m(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{(3+m)^{2}}
\end{aligned}
$$

Result(type 8, 27 leaves):

$$
\int x^{m}\left(-c^{2} d x^{2}+d\right)(a+b \arcsin (c x))^{2} \mathrm{~d} x
$$

Problem 121: Unable to integrate problem.

$$
\int\left(-a^{2} c x^{2}+c\right)^{3 / 2} \arcsin (a x)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 293 leaves, 17 steps):
$\frac{x\left(-a^{2} c x^{2}+c\right)^{3 / 2} \arcsin (a x)^{3 / 2}}{4}+\frac{3 c x \arcsin (a x)^{3 / 2} \sqrt{-a^{2} c x^{2}+c}}{8}+\frac{3 c \arcsin (a x)^{5 / 2} \sqrt{-a^{2} c x^{2}+c}}{20 a \sqrt{-a^{2} x^{2}+1}}$
$-\frac{3 c \text { FresnelC }\left(\frac{2 \sqrt{2} \sqrt{\arcsin (a x)}}{\sqrt{\pi}}\right) \sqrt{2} \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}{1024 a \sqrt{-a^{2} x^{2}+1}}-\frac{3 c \text { FresnelC }\left(\frac{2 \sqrt{\arcsin (a x)}}{\sqrt{\pi}}\right) \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}{32 a \sqrt{-a^{2} x^{2}+1}}$

$$
+\frac{3 c\left(-a^{2} x^{2}+1\right)^{3 / 2} \sqrt{-a^{2} c x^{2}+c} \sqrt{\arcsin (a x)}}{32 a}+\frac{27 c \sqrt{-a^{2} c x^{2}+c} \sqrt{\arcsin (a x)}}{256 a \sqrt{-a^{2} x^{2}+1}}-\frac{9 a c x^{2} \sqrt{-a^{2} c x^{2}+c} \sqrt{\arcsin (a x)}}{32 \sqrt{-a^{2} x^{2}+1}}
$$

Result(type 8, 22 leaves):

$$
\int\left(-a^{2} c x^{2}+c\right)^{3 / 2} \arcsin (a x)^{3 / 2} \mathrm{~d} x
$$

Problem 122: Unable to integrate problem.

$$
\int \sqrt{-a^{2} c x^{2}+c} \arcsin (a x)^{5 / 2} \mathrm{~d} x
$$

Optimal(type 4, 199 leaves, 10 steps):
$\frac{x \arcsin (a x)^{5 / 2} \sqrt{-a^{2} c x^{2}+c}}{2}+\frac{5 \arcsin (a x)^{3 / 2} \sqrt{-a^{2} c x^{2}+c}}{16 a \sqrt{-a^{2} x^{2}+1}}-\frac{5 a x^{2} \arcsin (a x)^{3 / 2} \sqrt{-a^{2} c x^{2}+c}}{8 \sqrt{-a^{2} x^{2}+1}}+\frac{\arcsin (a x)^{7 / 2} \sqrt{-a^{2} c x^{2}+c}}{7 a \sqrt{-a^{2} x^{2}+1}}$

$$
+\frac{15 \text { FresnelS }\left(\frac{2 \sqrt{\arcsin (a x)}}{\sqrt{\pi}}\right) \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}{128 a \sqrt{-a^{2} x^{2}+1}}-\frac{15 x \sqrt{-a^{2} c x^{2}+c} \sqrt{\arcsin (a x)}}{32}
$$

Result(type 8, 22 leaves):

$$
\int \sqrt{-a^{2} c x^{2}+c} \arcsin (a x)^{5 / 2} \mathrm{~d} x
$$

Problem 124: Unable to integrate problem.

$$
\int\left(a^{2}-x^{2}\right)^{3 / 2} \arcsin \left(\frac{x}{a}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 289 leaves, 17 steps):
$\frac{x\left(a^{2}-x^{2}\right)^{3 / 2} \arcsin \left(\frac{x}{a}\right)^{3 / 2}}{4}+\frac{3 a^{2} x \arcsin \left(\frac{x}{a}\right)^{3 / 2} \sqrt{a^{2}-x^{2}}}{8}+\frac{3 a^{3} \arcsin \left(\frac{x}{a}\right)^{5 / 2} \sqrt{a^{2}-x^{2}}}{20 \sqrt{1-\frac{x^{2}}{a^{2}}}}$

$$
\begin{aligned}
& -\frac{3 a^{3} \text { FresnelC }\left(\frac{2 \sqrt{2} \sqrt{\arcsin \left(\frac{x}{a}\right)}}{\sqrt{\pi}}\right) \sqrt{2} \sqrt{\pi} \sqrt{a^{2}-x^{2}}}{1024 \sqrt{1-\frac{x^{2}}{a^{2}}}}-\frac{3 a^{3} \text { FresnelC }\left(\frac{\left.2 \sqrt{\arcsin \left(\frac{x}{a}\right)}\right)}{\sqrt{\pi}}\right) \sqrt{\pi} \sqrt{a^{2}-x^{2}}}{32 \sqrt{1-\frac{x^{2}}{a^{2}}}}+\frac{3\left(a^{2}-x^{2}\right)^{5} / 2 \sqrt{\arcsin \left(\frac{x}{a}\right)}}{256 \sqrt{1-\frac{x^{2}}{a^{2}}}}+\frac{27 a^{3} \sqrt{a^{2}-x^{2}} \sqrt{\arcsin \left(\frac{x}{a}\right)}}{+\frac{9 a x^{2} \sqrt{a^{2}-x^{2}} \sqrt{\arcsin \left(\frac{x}{a}\right)}}{32 \sqrt{1-\frac{x^{2}}{a^{2}}}}}
\end{aligned}
$$

Result(type 8, 22 leaves):

$$
\int\left(a^{2}-x^{2}\right)^{3 / 2} \arcsin \left(\frac{x}{a}\right)^{3 / 2} \mathrm{~d} x
$$

Problem 127: Unable to integrate problem.

$$
\int \frac{\sqrt{-a^{2} c x^{2}+c}}{\sqrt{\arcsin (a x)}} \mathrm{d} x
$$

Optimal(type 4, 81 leaves, 5 steps):
$\frac{\sqrt{-a^{2} c x^{2}+c} \text { FresnelC }\left(\frac{2 \sqrt{\arcsin (a x)}}{\sqrt{\pi}}\right) \sqrt{\pi}}{2 a \sqrt{-a^{2} x^{2}+1}}+\frac{\sqrt{-a^{2} c x^{2}+c} \sqrt{\arcsin (a x)}}{a \sqrt{-a^{2} x^{2}+1}}$

Result(type 8, 22 leaves):

$$
\int \frac{\sqrt{-a^{2} c x^{2}+c}}{\sqrt{\arcsin (a x)}} \mathrm{d} x
$$

Problem 129: Unable to integrate problem.

$$
\int \frac{\left(-a^{2} c x^{2}+c\right)^{5 / 2}}{\arcsin (a x)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 193 leaves, 10 steps):
$-\frac{3 c^{2} \text { FresnelS }\left(\frac{2 \sqrt{2} \sqrt{\arcsin (a x)}}{\sqrt{\pi}}\right) \sqrt{2} \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}{-15 c^{2} \text { FresnelS }\left(\frac{2 \sqrt{\arcsin (a x)}}{\sqrt{\pi}}\right) \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}$

$$
-\frac{c^{2} \text { FresnelS }\left(\frac{2 \sqrt{3} \sqrt{\arcsin (a x)}}{\sqrt{\pi}}\right) \sqrt{3} \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}{8 a \sqrt{-a^{2} x^{2}+1}}-\frac{2\left(-a^{2} c x^{2}+c\right)^{5 / 2} \sqrt{-a^{2} x^{2}+1}}{a \sqrt{\arcsin (a x)}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{\left(-a^{2} c x^{2}+c\right)^{5 / 2}}{\arcsin (a x)^{3 / 2}} \mathrm{~d} x
$$

Problem 130: Unable to integrate problem.

$$
\int \frac{\left(-a^{2} c x^{2}+c\right)^{3 / 2}}{\arcsin (a x)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 135 leaves, 8 steps):

Result(type 8, 22 leaves):

$$
\int \frac{\left(-a^{2} c x^{2}+c\right)^{3 / 2}}{\arcsin (a x)^{3 / 2}} \mathrm{~d} x
$$

Problem 133: Unable to integrate problem.

$$
\int \sqrt{-c^{2} d x^{2}+d}(a+b \arcsin (c x))^{n} \mathrm{~d} x
$$

Optimal(type 4, 237 leaves, 6 steps):
$(a+b \arcsin (c x))^{1+n} \sqrt{-c^{2} d x^{2}+d}-\frac{\mathrm{I} 2^{-n-3}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{-2 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{}$
$2 b c(1+n) \sqrt{-c^{2} x^{2}+1}$

$$
c \mathrm{e}^{\frac{2 \mathrm{I} a}{b}}\left(\frac{-\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}
$$

$+\frac{\mathrm{I} 2^{-n-3} \mathrm{e}^{\frac{2 \mathrm{I} a}{b}}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{2 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{c\left(\frac{\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}}$
Result(type 8, 26 leaves):

$$
\int \sqrt{-c^{2} d x^{2}+d}(a+b \arcsin (c x))^{n} \mathrm{~d} x
$$

Problem 135: Unable to integrate problem.

$$
\int x\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{n} \mathrm{~d} x
$$

Optimal(type 4, 743 leaves, 15 steps):
$-\frac{5 d^{2}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{-\mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{128 c^{2} \mathrm{e}^{\frac{\mathrm{I} a}{b}}\left(\frac{-\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}}-\frac{5 d^{2} \mathrm{e}^{\frac{\mathrm{I} a}{b}}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{\mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{128 c^{2}\left(\frac{\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}}$

$$
-\frac{3^{1-n} d^{2}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{-3 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{b}
$$

$$
128 c^{2} \mathrm{e}^{\frac{3 \mathrm{I} a}{b}}\left(\frac{-\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}
$$

$$
-\frac{3^{1-n} d^{2} \mathrm{e}^{\frac{3 \mathrm{I} a}{b}}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{3 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{}
$$

$$
128 c^{2}\left(\frac{\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}
$$

$$
-\frac{d^{2}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{-5 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{1285^{n} c^{2} \mathrm{e}^{\frac{5 \mathrm{I} a}{b}}\left(\frac{-\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}}
$$

$$
\begin{aligned}
& -\frac{d^{2} \mathrm{e}^{\frac{5 \mathrm{I} a}{b}}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{5 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{1285^{n} c^{2}\left(\frac{\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}} \\
& -\frac{7^{-1-n} d^{2}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{-7 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{128 c^{2} \mathrm{e}^{\frac{7 \mathrm{I} a}{b}}\left(\frac{-\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}} \\
& -\frac{7^{-1-n} d^{2} \mathrm{e}^{\frac{7 \mathrm{I} a}{b}}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{7 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{128 c^{2}\left(\frac{\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type 8, 27 leaves):

$$
\int x\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{n} \mathrm{~d} x
$$

Problem 136: Unable to integrate problem.

$$
\int\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{n} \mathrm{~d} x
$$

Optimal(type 4, 644 leaves, 12 steps):
$\frac{5 d^{2}(a+b \arcsin (c x))^{1+n} \sqrt{-c^{2} d x^{2}+d}}{16 b c(1+n) \sqrt{-c^{2} x^{2}+1}}-\frac{15 \mathrm{I}^{-7-n} d^{2}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{-2 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{c \mathrm{e}^{\frac{2 \mathrm{I} a}{b}}\left(\frac{-\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}}$
$+\frac{15 \mathrm{I} 2^{-7-n} d^{2} \mathrm{e}^{\frac{2 \mathrm{I} a}{b}}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{2 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{c\left(\frac{\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}}$

$$
\begin{gathered}
-\frac{3 \mathrm{I} 2^{-7-2 n} d^{2}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{-4 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{c \mathrm{e}^{\frac{4 \mathrm{I} a}{b}}\left(\frac{-\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}} \\
+\frac{3 \mathrm{I} 2^{-7-2 n} d^{2} \mathrm{e}^{\frac{4 \mathrm{I} a}{b}}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{4 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{c\left(\frac{\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}}
\end{gathered}
$$

$$
\begin{aligned}
& -\frac{\mathrm{I} 2^{-7-n} 3^{-1-n} d^{2}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{-6 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{c \mathrm{e}^{\frac{6 \mathrm{I} a}{b}}\left(\frac{-\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{\mathrm{I} 2^{-7-n} 3^{-1-n} d^{2} \mathrm{e}^{\frac{6 \mathrm{I} a}{b}}(a+b \arcsin (c x))^{n} \Gamma\left(1+n, \frac{6 \mathrm{I}(a+b \arcsin (c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{c\left(\frac{\mathrm{I}(a+b \arcsin (c x))}{b}\right)^{n} \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type 8, 26 leaves):

$$
\int\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{n} \mathrm{~d} x
$$

Problem 137: Unable to integrate problem.

$$
\int(c d x+d)^{3 / 2}(a+b \arcsin (c x)) \sqrt{-c f x+f} \mathrm{~d} x
$$

Optimal(type 3, 229 leaves, 8 steps):
$\frac{d x(a+b \arcsin (c x)) \sqrt{c d x+d} \sqrt{-c f x+f}}{2}-\frac{d\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x)) \sqrt{c d x+d} \sqrt{-c f x+f}}{3 c}+\frac{b d x \sqrt{c d x+d} \sqrt{-c f x+f}}{3 \sqrt{-c^{2} x^{2}+1}}$
$-\frac{b c d x^{2} \sqrt{c d x+d} \sqrt{-c f x+f}}{4 \sqrt{-c^{2} x^{2}+1}}-\frac{b c^{2} d x^{3} \sqrt{c d x+d} \sqrt{-c f x+f}}{9 \sqrt{-c^{2} x^{2}+1}}+\frac{d(a+b \arcsin (c x))^{2} \sqrt{c d x+d} \sqrt{-c f x+f}}{4 b c \sqrt{-c^{2} x^{2}+1}}$
Result(type 8, 28 leaves):

$$
\int(c d x+d)^{3 / 2}(a+b \arcsin (c x)) \sqrt{-c f x+f} \mathrm{~d} x
$$

Problem 138: Unable to integrate problem.

$$
\int \frac{(a+b \arcsin (c x)) \sqrt{-c f x+f}}{(c d x+d)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 141 leaves, 6 steps):

$$
-\frac{2 b f^{3}\left(-c^{2} x^{2}+1\right)^{5 / 2}}{3 c(c x+1)(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}}-\frac{f^{3}(-c x+1)^{3}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))}{3 c(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}}-\frac{b f^{3}\left(-c^{2} x^{2}+1\right)^{5 / 2} \ln (c x+1)}{3 c(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}}
$$

Result(type 8, 28 leaves):

$$
\int \frac{(a+b \arcsin (c x)) \sqrt{-c f x+f}}{(c d x+d)^{5 / 2}} \mathrm{~d} x
$$

Problem 139: Unable to integrate problem.

$$
\int(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}(a+b \arcsin (c x)) \mathrm{d} x
$$

Optimal(type 3, 265 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{25 b c x^{2}(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}}{96\left(-c^{2} x^{2}+1\right)^{5 / 2}}+\frac{5 b c^{3} x^{4}(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}}{96\left(-c^{2} x^{2}+1\right)^{5 / 2}}+\frac{x(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}(a+b \arcsin (c x))}{6} \\
& +\frac{5 x(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}(a+b \arcsin (c x))}{16\left(-c^{2} x^{2}+1\right)^{2}}+\frac{5 x(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}(a+b \arcsin (c x))}{24\left(-c^{2} x^{2}+1\right)} \\
& +\frac{5(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}(a+b \arcsin (c x))^{2}}{32 b c\left(-c^{2} x^{2}+1\right)^{5 / 2}}+\frac{b(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2 \sqrt{-c^{2} x^{2}+1}}}{36 c}
\end{aligned}
$$

Result(type 8, 28 leaves):

$$
\int(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}(a+b \arcsin (c x)) \mathrm{d} x
$$

Problem 140: Unable to integrate problem.

$$
\int \frac{(c d x+d)^{3 / 2}(a+b \arcsin (c x))}{\sqrt{-c f x+f}} \mathrm{~d} x
$$

Optimal(type 3, 210 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{2 d^{2}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))}{c \sqrt{c d x+d} \sqrt{-c f x+f}}-\frac{d^{2} x\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))}{2 \sqrt{c d x+d} \sqrt{-c f x+f}}+\frac{2 b d^{2} x \sqrt{-c^{2} x^{2}+1}}{\sqrt{c d x+d} \sqrt{-c f x+f}}+\frac{b c d^{2} x^{2} \sqrt{-c^{2} x^{2}+1}}{4 \sqrt{c d x+d} \sqrt{-c f x+f}} \\
& \quad+\frac{3 d^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{4 b c \sqrt{c d x+d} \sqrt{-c f x+f}}
\end{aligned}
$$

Result(type 8, 28 leaves):

$$
\int \frac{(c d x+d)^{3 / 2}(a+b \arcsin (c x))}{\sqrt{-c f x+f}} \mathrm{~d} x
$$

Problem 141: Unable to integrate problem.

$$
\int \frac{(c d x+d)^{5 / 2}(a+b \arcsin (c x))}{(-c f x+f)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 403 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{3 b d^{4} x\left(-c^{2} x^{2}+1\right)^{3 / 2}}{2(c d x+d)^{3 / 2}(-c f x+f)^{3 / 2}}+\frac{b c d^{4} x^{2}\left(-c^{2} x^{2}+1\right)^{3 / 2}}{(c d x+d)^{3 / 2}(-c f x+f)^{3 / 2}}-\frac{5 b d^{4}(c x+1)^{2}\left(-c^{2} x^{2}+1\right)^{3 / 2}}{4 c(c d x+d)^{3 / 2}(-c f x+f)^{3 / 2}}+\frac{15 b d^{4}\left(-c^{2} x^{2}+1\right)^{3 / 2} \arcsin (c x)^{2}}{4 c(c d x+d)^{3 / 2}(-c f x+f)^{3 / 2}} \\
& \quad+\frac{2 d^{4}(c x+1)^{3}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))}{c(c d x+d)^{3 / 2}(-c f x+f)^{3 / 2}}+\frac{15 d^{4}\left(-c^{2} x^{2}+1\right)^{2}(a+b \arcsin (c x))}{2 c(c d x+d)^{3 / 2}(-c f x+f)^{3 / 2}}+\frac{5 d^{4}(c x+1)\left(-c^{2} x^{2}+1\right)^{2}(a+b \arcsin (c x))}{2 c(c d x+d)^{3 / 2}(-c f x+f)^{3 / 2}}
\end{aligned}
$$

$$
-\frac{15 d^{4}\left(-c^{2} x^{2}+1\right)^{3 / 2} \arcsin (c x)(a+b \arcsin (c x))}{2 c(c d x+d)^{3 / 2}(-c f x+f)^{3 / 2}}+\frac{8 b d^{4}\left(-c^{2} x^{2}+1\right)^{3 / 2} \ln (-c x+1)}{c(c d x+d)^{3 / 2}(-c f x+f)^{3 / 2}}
$$

Result(type 8, 28 leaves):

$$
\int \frac{(c d x+d)^{5 / 2}(a+b \arcsin (c x))}{(-c f x+f)^{3 / 2}} \mathrm{~d} x
$$

Problem 142: Unable to integrate problem.

$$
\int \frac{\sqrt{c d x+d}(a+b \arcsin (c x))}{(-c f x+f)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 144 leaves, 8 steps):

$$
\frac{2 d^{2}(c x+1)\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))}{c(c d x+d)^{3 / 2}(-c f x+f)^{3 / 2}}-\frac{d^{2}\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{2 b c(c d x+d)^{3 / 2}(-c f x+f)^{3 / 2}}+\frac{2 b d^{2}\left(-c^{2} x^{2}+1\right)^{3 / 2} \ln (-c x+1)}{c(c d x+d)^{3 / 2}(-c f x+f)^{3 / 2}}
$$

Result(type 8, 28 leaves):

$$
\int \frac{\sqrt{c d x+d}(a+b \arcsin (c x))}{(-c f x+f)^{3 / 2}} \mathrm{~d} x
$$

Problem 143: Unable to integrate problem.

$$
\int \frac{\sqrt{c d x+d}(a+b \arcsin (c x))}{(-c f x+f)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 142 leaves, 6 steps):

$$
-\frac{2 b d^{3}\left(-c^{2} x^{2}+1\right)^{5 / 2}}{3 c(-c x+1)(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}}+\frac{d^{3}(c x+1)^{3}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))}{3 c(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}}-\frac{b d^{3}\left(-c^{2} x^{2}+1\right)^{5 / 2} \ln (-c x+1)}{3 c(c d x+d)^{5 / 2}(-c f x+f)^{5 / 2}}
$$

Result(type 8, 28 leaves):

$$
\int \frac{\sqrt{c d x+d}(a+b \arcsin (c x))}{(-c f x+f)^{5 / 2}} \mathrm{~d} x
$$

Problem 144: Unable to integrate problem.

$$
\int(c d x+d)^{5 / 2}(a+b \arcsin (c x))^{2} \sqrt{-c e x+e} \mathrm{~d} x
$$

Optimal(type 3, 523 leaves, 23 steps):
$\frac{8 b^{2} d^{2} \sqrt{c d x+d} \sqrt{-c e x+e}}{9 c}-\frac{15 b^{2} d^{2} x \sqrt{c d x+d} \sqrt{-c e x+e}}{64}-\frac{b^{2} c^{2} d^{2} x^{3} \sqrt{c d x+d} \sqrt{-c e x+e}}{32}+\frac{4 b^{2} d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{c d x+d} \sqrt{-c e x+e}}{27 c}$
$+\frac{3 d^{2} x(a+b \arcsin (c x))^{2} \sqrt{c d x+d} \sqrt{-c e x+e}}{8}+\frac{c^{2} d^{2} x^{3}(a+b \arcsin (c x))^{2} \sqrt{c d x+d} \sqrt{-c e x+e}}{4}$

$$
\begin{aligned}
& -\frac{2 d^{2}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2} \sqrt{c d x+d} \sqrt{-c e x+e}}{3 c}+\frac{15 b^{2} d^{2} \arcsin (c x) \sqrt{c d x+d} \sqrt{-c e x+e}}{64 c \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{4 b d^{2} x(a+b \arcsin (c x)) \sqrt{c d x+d} \sqrt{-c e x+e}}{3 \sqrt{-c^{2} x^{2}+1}}-\frac{3 b c d^{2} x^{2}(a+b \arcsin (c x)) \sqrt{c d x+d} \sqrt{-c e x+e}}{8 \sqrt{-c^{2} x^{2}+1}} \\
& -\frac{4 b c^{2} d^{2} x^{3}(a+b \arcsin (c x)) \sqrt{c d x+d} \sqrt{-c e x+e}}{9 \sqrt{-c^{2} x^{2}+1}}-\frac{b c^{3} d^{2} x^{4}(a+b \arcsin (c x)) \sqrt{c d x+d} \sqrt{-c e x+e}}{8 \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{5 d^{2}(a+b \arcsin (c x))^{3} \sqrt{c d x+d} \sqrt{-c e x+e}}{24 b c \sqrt{-c^{2} x^{2}+1}} \\
& \text { Result (type 8, } 30 \text { leaves): } \\
&
\end{aligned}
$$

Problem 145: Unable to integrate problem.

$$
\int(c d x+d)^{3 / 2}(a+b \arcsin (c x))^{2} \sqrt{-c e x+e} \mathrm{~d} x
$$

Optimal(type 3, 385 leaves, 13 steps):
$\frac{4 b^{2} d \sqrt{c d x+d} \sqrt{-c e x+e}}{9 c}-\frac{b^{2} d x \sqrt{c d x+d} \sqrt{-c e x+e}}{4}+\frac{2 b^{2} d\left(-c^{2} x^{2}+1\right) \sqrt{c d x+d} \sqrt{-c e x+e}}{27 c}$

$$
9 \sqrt{-c^{2} x^{2}+1}
$$

$$
6 b c \sqrt{-c^{2} x^{2}+1}
$$

Result(type 8, 30 leaves):

$$
\int(c d x+d)^{3 / 2}(a+b \arcsin (c x))^{2} \sqrt{-c e x+e} \mathrm{~d} x
$$

Problem 146: Unable to integrate problem.

$$
\int(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 306 leaves, 11 steps):
$-\frac{b^{2} x(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}{32}-\frac{15 b^{2} x(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}{64\left(-c^{2} x^{2}+1\right)}+\frac{9 b^{2}(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2} \arcsin (c x)}{64 c\left(-c^{2} x^{2}+1\right)^{3 / 2}}$

$$
\begin{aligned}
& -\frac{3 b c x^{2}(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))}{8\left(-c^{2} x^{2}+1\right)^{3 / 2}}+\frac{x(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))^{2}}{4} \\
& +\frac{3 x(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))^{2}}{8\left(-c^{2} x^{2}+1\right)}+\frac{(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))^{3}}{8 b c\left(-c^{2} x^{2}+1\right)^{3 / 2}} \\
& +\frac{b(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{8 c}
\end{aligned}
$$

Result(type 8, 30 leaves):

$$
\int(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))^{2} \mathrm{~d} x
$$

Problem 147: Unable to integrate problem.

$$
\int(c d x+d)^{3 / 2}(-c e x+e)^{5 / 2}(a+b \arcsin (c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 593 leaves, 19 steps):
$-\frac{8 b^{2} e(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}{225 c}-\frac{b^{2} e x(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}{32}-\frac{16 b^{2} e(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}{75 c\left(-c^{2} x^{2}+1\right)}$
$-\frac{15 b^{2} e x(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}{64\left(-c^{2} x^{2}+1\right)}-\frac{2 b^{2} e(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}\left(-c^{2} x^{2}+1\right)}{125 c}+\frac{9 b^{2} e(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2} \arcsin (c x)}{64 c\left(-c^{2} x^{2}+1\right)^{3 / 2}}$
$-\frac{2 b e x(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))}{5\left(-c^{2} x^{2}+1\right)^{3 / 2}}-\frac{3 b c e x^{2}(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))}{8\left(-c^{2} x^{2}+1\right)^{3 / 2}}$
$+\frac{4 b c^{2} e x^{3}(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))}{15\left(-c^{2} x^{2}+1\right)^{3 / 2}}-\frac{2 b c^{4} e x^{5}(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))}{25\left(-c^{2} x^{2}+1\right)^{3 / 2}}$
$+\frac{e x(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))^{2}}{4}+\frac{3 e x(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))^{2}}{8\left(-c^{2} x^{2}+1\right)}$
$+\frac{e(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{5 c}+\frac{e(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x))^{3}}{8 b c\left(-c^{2} x^{2}+1\right)^{3 / 2}}$
$+\frac{b e(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{8 c}$
Result(type 8, 30 leaves):

$$
\int(c d x+d)^{3 / 2}(-c e x+e)^{5 / 2}(a+b \arcsin (c x))^{2} \mathrm{~d} x
$$

Problem 148: Unable to integrate problem.

$$
\int \frac{(-c e x+e)^{5 / 2}(a+b \arcsin (c x))^{2}}{(c d x+d)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 855 leaves, 28 steps):

$$
\begin{aligned}
& \frac{8 a b e^{4} x\left(-c^{2} x^{2}+1\right)^{3 / 2}}{(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}+\frac{8 b^{2} e^{4}\left(-c^{2} x^{2}+1\right)^{2}}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}-\frac{b^{2} e^{4} x\left(-c^{2} x^{2}+1\right)^{2}}{4(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}+\frac{b^{2} e^{4}\left(-c^{2} x^{2}+1\right)^{3 / 2} \arcsin (c x)}{4 c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}} \\
& +\frac{8 b^{2} e^{4} x\left(-c^{2} x^{2}+1\right)^{3 / 2} \arcsin (c x)}{(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}-\frac{b c e^{4} x^{2}\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x))}{2(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}-\frac{8 e^{4}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}} \\
& +\frac{8 e^{4} x\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}+\frac{16 \mathrm{I} b^{2} e^{4}\left(-c^{2} x^{2}+1\right)^{3 / 2} \operatorname{polylog}\left(2,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}-\frac{4 e^{4}\left(-c^{2} x^{2}+1\right)^{2}(a+b \arcsin (c x))^{2}}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}} \\
& +\frac{e^{4} x\left(-c^{2} x^{2}+1\right)^{2}(a+b \arcsin (c x))^{2}}{2(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}-\frac{5 e^{4}\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x))^{3}}{2 b c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}-\frac{8 \mathrm{I} e^{4}\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}} \\
& +\frac{16 b e^{4}\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x)) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}-\frac{8 \mathrm{I} b^{2} e^{4}\left(-c^{2} x^{2}+1\right)^{3 / 2} \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}} \\
& -\frac{32 \mathrm{I} b e^{4}\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x)) \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}-\frac{16 \mathrm{I} b^{2} e^{4}\left(-c^{2} x^{2}+1\right)^{3 / 2} \operatorname{poly} \log \left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}
\end{aligned}
$$

Result(type 8, 30 leaves):

$$
\int \frac{(-c e x+e)^{5 / 2}(a+b \arcsin (c x))^{2}}{(c d x+d)^{3 / 2}} \mathrm{~d} x
$$

Problem 149: Unable to integrate problem.

$$
\int \frac{(-c e x+e)^{5 / 2}(a+b \arcsin (c x))^{2}}{(c d x+d)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 637 leaves, 25 steps):

$$
\begin{aligned}
& -\frac{2 a b e^{5} x\left(-c^{2} x^{2}+1\right)^{5 / 2}}{(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}}-\frac{2 b^{2} e^{5}\left(-c^{2} x^{2}+1\right)^{3}}{c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}}-\frac{2 b^{2} e^{5} x\left(-c^{2} x^{2}+1\right)^{5 / 2} \arcsin (c x)}{(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}}+\frac{28 \mathrm{I} e^{5}\left(-c^{2} x^{2}+1\right)^{5 / 2}(a+b \arcsin (c x))^{2}}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}} \\
& +\frac{e^{5}\left(-c^{2} x^{2}+1\right)^{3}(a+b \arcsin (c x))^{2}}{c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}}+\frac{5 e^{5}\left(-c^{2} x^{2}+1\right)^{5 / 2}(a+b \arcsin (c x))^{3}}{3 b c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}}-\frac{16 b^{2} e^{5}\left(-c^{2} x^{2}+1\right)^{5 / 2} \cot \left(\frac{\pi}{4}+\frac{\arcsin (c x)}{2}\right)}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}} \\
& +\frac{28 e^{5}\left(-c^{2} x^{2}+1\right)^{5 / 2}(a+b \arcsin (c x))^{2} \cot \left(\frac{\pi}{4}+\frac{\arcsin (c x)}{2}\right)}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}}-\frac{8 b e^{5}\left(-c^{2} x^{2}+1\right)^{5 / 2}(a+b \arcsin (c x)) \csc \left(\frac{\pi}{4}+\frac{\arcsin (c x)}{2}\right)}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}} \\
& -\frac{4 e^{5}\left(-c^{2} x^{2}+1\right)^{5 / 2}(a+b \arcsin (c x))^{2} \cot \left(\frac{\pi}{4}+\frac{\arcsin (c x)}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\arcsin (c x)}{2}\right)^{2}}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}} \\
& -\frac{112 b e^{5}\left(-c^{2} x^{2}+1\right)^{5 / 2}(a+b \arcsin (c x)) \ln \left(1-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}}+\frac{112 \mathrm{I} b^{2} e^{5}\left(-c^{2} x^{2}+1\right)^{5 / 2} \operatorname{polylog}\left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}}
\end{aligned}
$$

Result(type 8, 30 leaves):

$$
\int \frac{(-c e x+e)^{5 / 2}(a+b \arcsin (c x))^{2}}{(c d x+d)^{5 / 2}} \mathrm{~d} x
$$

Problem 150: Unable to integrate problem.

$$
\int \frac{(c d x+d)^{5 / 2}(a+b \arcsin (c x))^{2}}{\sqrt{-c e x+e}} \mathrm{~d} x
$$

Optimal(type 3, 483 leaves, 17 steps):

$$
\begin{aligned}
& \frac{68 b^{2} d^{3}\left(-c^{2} x^{2}+1\right)}{9 c \sqrt{c d x+d} \sqrt{-c e x+e}}+\frac{3 b^{2} d^{3} x\left(-c^{2} x^{2}+1\right)}{4 \sqrt{c d x+d} \sqrt{-c e x+e}}-\frac{2 b^{2} d^{3}\left(-c^{2} x^{2}+1\right)^{2}}{27 c \sqrt{c d x+d} \sqrt{-c e x+e}}-\frac{11 d^{3}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{3 c \sqrt{c d x+d} \sqrt{-c e x+e}} \\
& \quad-\frac{3 d^{3} x\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{2 \sqrt{c d x+d} \sqrt{-c e x+e}}-\frac{c d^{3} x^{2}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{3 \sqrt{c d x+d} \sqrt{-c e x+e}}-\frac{3 b^{2} d^{3} \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{4 c \sqrt{c d x+d} \sqrt{-c e x+e}} \\
& \quad+\frac{22 b d^{3} x(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{3 \sqrt{c d x+d} \sqrt{-c e x+e}}+\frac{3 b c d^{3} x^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{2 \sqrt{c d x+d} \sqrt{-c e x+e}}+\frac{2 b c^{2} d^{3} x^{3}(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{9 \sqrt{c d x+d} \sqrt{-c e x+e}} \\
& \quad+\frac{5 d^{3}(a+b \arcsin (c x))^{3} \sqrt{-c^{2} x^{2}+1}}{6 b c \sqrt{c d x+d} \sqrt{-c e x+e}} \\
& \text { Result (type 8, 30 leaves): }
\end{aligned}
$$

Problem 151: Unable to integrate problem.

$$
\int \frac{\sqrt{c d x+d}(a+b \arcsin (c x))^{2}}{\sqrt{-c e x+e}} \mathrm{~d} x
$$

Optimal(type 3, 203 leaves, 8 steps):

$$
\begin{aligned}
& \frac{2 b^{2} d\left(-c^{2} x^{2}+1\right)}{c \sqrt{c d x+d} \sqrt{-c e x+e}}-\frac{d\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{c \sqrt{c d x+d} \sqrt{-c e x+e}}+\frac{2 a b d x \sqrt{-c^{2} x^{2}+1}}{\sqrt{c d x+d} \sqrt{-c e x+e}}+\frac{2 b^{2} d x \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{\sqrt{c d x+d} \sqrt{-c e x+e}} \\
& \quad+\frac{d(a+b \arcsin (c x))^{3} \sqrt{-c^{2} x^{2}+1}}{3 b c \sqrt{c d x+d} \sqrt{-c e x+e}} \\
& \text { Result (type 8, } 30 \text { leaves) : }
\end{aligned}
$$

$$
\int \frac{\sqrt{c d x+d}(a+b \arcsin (c x))^{2}}{\sqrt{-c e x+e}} \mathrm{~d} x
$$

Problem 152: Unable to integrate problem.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{\sqrt{c d x+d} \sqrt{-c e x+e}} d x
$$

Optimal(type 3, 47 leaves, 2 steps):

$$
\frac{(a+b \arcsin (c x))^{3} \sqrt{-c^{2} x^{2}+1}}{3 b c \sqrt{c d x+d} \sqrt{-c e x+e}}
$$

$$
\int \frac{(a+b \arcsin (c x))^{2}}{\sqrt{c d x+d} \sqrt{-c e x+e}} d x
$$

Problem 153: Unable to integrate problem.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{\sqrt{c d x+d}(-c e x+e)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 447 leaves, 16 steps):
$\frac{d\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}+\frac{d x\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}-\frac{I d\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}$

$$
\begin{aligned}
& +\frac{4 \mathrm{I} b d\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x)) \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}+\frac{2 b d\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x)) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}} \\
& -\frac{2 \mathrm{I} b^{2} d\left(-c^{2} x^{2}+1\right)^{3 / 2} \operatorname{polylog}\left(2,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}+\frac{2 \mathrm{I} b^{2} d\left(-c^{2} x^{2}+1\right)^{3 / 2} \operatorname{polylog}\left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right)}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}} \\
& -\frac{\mathrm{I} b^{2} d\left(-c^{2} x^{2}+1\right)^{3 / 2} \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}
\end{aligned}
$$

Result(type 8, 30 leaves):

$$
\int \frac{(a+b \arcsin (c x))^{2}}{\sqrt{c d x+d}(-c e x+e)^{3 / 2}} \mathrm{~d} x
$$

Problem 154: Unable to integrate problem.

$$
\int \frac{\sqrt{c d x+d}(a+b \arcsin (c x))^{2}}{(-c e x+e)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 426 leaves, 20 steps):

$$
\begin{aligned}
& \left.-\frac{\mathrm{I} d^{3}\left(-c^{2} x^{2}+1\right)^{5 / 2}(a+b \arcsin (c x))^{2}}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}}-\frac{4 b d^{3}\left(-c^{2} x^{2}+1\right)^{5 / 2}(a+b \arcsin (c x)) \ln \left(1-\frac{\mathrm{I}}{\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}}\right)}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}}\right) \\
& -\frac{4 \mathrm{I} b^{2} d^{3}\left(-c^{2} x^{2}+1\right)^{5 / 2} \operatorname{poly} \log \left(2, \frac{\mathrm{I}}{\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}}\right)}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}}-\frac{2 b d^{3}\left(-c^{2} x^{2}+1\right)^{5 / 2}(a+b \arcsin (c x)) \sec \left(\frac{\pi}{4}+\frac{\arcsin (c x)}{2}\right)^{2}}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}} \\
& +\frac{4 b^{2} d^{3}\left(-c^{2} x^{2}+1\right)^{5 / 2} \tan \left(\frac{\pi}{4}+\frac{\arcsin (c x)}{2}\right)}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}}-\frac{d^{3}\left(-c^{2} x^{2}+1\right)^{5 / 2}(a+b \arcsin (c x))^{2} \tan \left(\frac{\pi}{4}+\frac{\arcsin (c x)}{2}\right)}{3 c(c d x+d)^{5 / 2}(-c e x+e)^{5 / 2}} \\
& \left.+\frac{d^{3}\left(-c^{2} x^{2}+1\right)^{5 / 2}(a+b \arcsin (c x))^{2} \sec \left(\frac{\pi}{4}+\frac{\arcsin (c x)}{2}\right)^{2} \tan \left(\frac{\pi}{4}+\frac{\arcsin (c x)}{2}\right)}{2}\right)
\end{aligned}
$$

Result(type 8, 30 leaves):

$$
\int \frac{\sqrt{c d x+d}(a+b \arcsin (c x))^{2}}{(-c e x+e)^{5 / 2}} \mathrm{~d} x
$$

Problem 155: Unable to integrate problem.

$$
\int \frac{\sqrt{c d x+d} \sqrt{-c e x+e}(a+b \arcsin (c x))^{2}}{x} \mathrm{~d} x
$$

Optimal(type 4, 420 leaves, 13 steps):
$-2 b^{2} \sqrt{c d x+d} \sqrt{-c e x+e}+(a+b \arcsin (c x))^{2} \sqrt{c d x+d} \sqrt{-c e x+e}-\frac{2 a b c x \sqrt{c d x+d} \sqrt{-c e x+e}}{\sqrt{-c^{2} x^{2}+1}}-\frac{2 b^{2} c x \arcsin (c x) \sqrt{c d x+d} \sqrt{-c e x+e}}{\sqrt{-c^{2} x^{2}+1}}$

$$
\begin{aligned}
& -\frac{2(a+b \arcsin (c x))^{2} \operatorname{arctanh}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{c d x+d} \sqrt{-c e x+e}}{\sqrt{-c^{2} x^{2}+1}} \\
& +\frac{2 \mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right) \sqrt{c d x+d} \sqrt{-c e x+e}}{\sqrt{-c^{2} x^{2}+1}} \\
& -\frac{2 \mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{c d x+d} \sqrt{-c e x+e}}{\sqrt{-c^{2} x^{2}+1}}- \\
& +\frac{2 b^{2} \operatorname{polylog}\left(3, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{c d x+d} \sqrt{-c e x+e}}{\sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

$$
-\frac{2 \mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2, \mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{c d x+d} \sqrt{-c e x+e}}{\sqrt{-c^{2} x^{2}+1}}-\frac{2 b^{2} \operatorname{polylog}\left(3,-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}\right) \sqrt{c d x+d} \sqrt{-c e x+e}}{\sqrt{-c^{2} x^{2}+1}}
$$

Result(type 8, 33 leaves):

$$
\int \frac{\sqrt{c d x+d} \sqrt{-c e x+e}(a+b \arcsin (c x))^{2}}{x} \mathrm{~d} x
$$

Problem 156: Unable to integrate problem.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{x^{2} \sqrt{c d x+d} \sqrt{-c e x+e}} \mathrm{~d} x
$$

Optimal(type 4, 210 leaves, 7 steps):
$-\frac{\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{x \sqrt{c d x+d} \sqrt{-c e x+e}}-\frac{\mathrm{I} c(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{\sqrt{c d x+d} \sqrt{-c e x+e}}+\frac{2 b c(a+b \arcsin (c x)) \ln \left(1-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{\sqrt{c d x+d} \sqrt{-c e x+e}}$
$-\frac{\mathrm{I} b^{2} c \operatorname{polylog}\left(2,\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{\sqrt{c d x+d} \sqrt{-c e x+e}}$
Result(type 8, 33 leaves):

$$
\int \frac{(a+b \arcsin (c x))^{2}}{x^{2} \sqrt{c d x+d} \sqrt{-c e x+e}} \mathrm{~d} x
$$

Problem 157: Unable to integrate problem.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 213 leaves, 7 steps):

$$
\begin{aligned}
& \frac{x\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}-\frac{\mathrm{I}\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}+\frac{2 b\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x)) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}} \\
& \quad-\frac{\mathrm{I} b^{2}\left(-c^{2} x^{2}+1\right)^{3 / 2} p o l y \log \left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right)}{c(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}}
\end{aligned}
$$

Result(type 8, 30 leaves):

$$
\int \frac{(a+b \arcsin (c x))^{2}}{(c d x+d)^{3 / 2}(-c e x+e)^{3 / 2}} \mathrm{~d} x
$$

Problem 170: Result is not expressed in closed-form.

$$
\int \frac{x^{4}(a+b \arcsin (c x))}{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 4, 597 leaves, 27 steps):

$$
\begin{aligned}
& -\frac{a d x}{e^{2}}-\frac{b\left(-c^{2} x^{2}+1\right)^{3 / 2}}{9 c^{3} e}-\frac{b d x \arcsin (c x)}{e^{2}}+\frac{x^{3}(a+b \arcsin (c x))}{3 e}+\frac{(-d)^{3 / 2}(a+b \arcsin (c x)) \ln \left(1-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{2 e^{5 / 2}} \\
& -\frac{(-d)^{3 / 2}(a+b \arcsin (c x)) \ln \left(1+\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{2 e^{5 / 2}}+\frac{(-d)^{3 / 2}(a+b \arcsin (c x)) \ln \left(1-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{2 e^{5 / 2}} \\
& -\frac{(-d)^{3 / 2}(a+b \arcsin (c x)) \ln \left(1+\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{2 e^{5 / 2}}+\frac{\mathrm{I} b(-d)^{3 / 2} \operatorname{polylog}\left(2,-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{2 e^{5 / 2}} \\
& -\frac{\mathrm{I} b(-d)^{3 / 2} \operatorname{polylog}\left(2, \frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{2 e^{5 / 2}}+\frac{\mathrm{I} b(-d)^{3 / 2} \operatorname{polylog}\left(2,-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{2 e^{5 / 2}} \\
& -\frac{\mathrm{I} b(-d)^{3 / 2} \text { polylog }\left(2, \frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{2 e^{5 / 2}}-\frac{b d \sqrt{-c^{2} x^{2}+1}}{c e^{2}}+\frac{b \sqrt{-c^{2} x^{2}+1}}{3 c^{3} e}
\end{aligned}
$$

Result(type 7, 362 leaves):

$$
+\frac{b \sqrt{-c^{2} x^{2}+1} x^{2}}{9 c e}
$$

Problem 171: Result is not expressed in closed-form.

$$
\int \frac{a+b \arcsin (c x)}{x^{4}\left(e x^{2}+d\right)} \mathrm{d} x
$$

Optimal(type 4, 596 leaves, 29 steps):

$$
\begin{aligned}
& \frac{-a-b \arcsin (c x)}{3 d x^{3}}+\frac{e(a+b \arcsin (c x))}{d^{2} x}-\frac{b c^{3} \operatorname{arctanh}\left(\sqrt{-c^{2} x^{2}+1}\right)}{6 d}+\frac{b c e \operatorname{arctanh}\left(\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}} \\
& \left.+\frac{e^{3 / 2}(a+b \arcsin (c x)) \ln \left(1-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{2(-d)^{5 / 2}}-\frac{e^{3 / 2}(a+b \arcsin (c x)) \ln \left(1+\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\left.\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}\right)}\right.}{2(-d)^{5 / 2}}\right) \\
& +\frac{e^{3 / 2}(a+b \arcsin (c x)) \ln \left(1-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{2(-d)^{5 / 2}}-\frac{e^{3 / 2}(a+b \arcsin (c x)) \ln \left(1+\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{2(-d)^{5 / 2}} \\
& +\frac{\mathrm{I} b e^{3 / 2} \operatorname{polylog}\left(2,-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{\mathrm{I})}-\frac{2\left(-d e^{5 / 2} / 2 \operatorname{polylog}\left(2, \frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)\right.}{2(-d)^{5 / 2}} \\
& +\frac{\mathrm{I} b e^{3 / 2} \operatorname{polylog}\left(2,-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{2(-d)^{5 / 2}}-\frac{\mathrm{I} b e^{3 / 2} \operatorname{polylog}\left(2, \frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{2(-d)^{5 / 2}}-\frac{b c \sqrt{-c^{2} x^{2}+1}}{6 d x^{2}}
\end{aligned}
$$

Result(type 7, 471 leaves):

$$
\begin{aligned}
& \frac{a e^{2} \arctan \left(\frac{x e}{\sqrt{d e}}\right)}{d^{2} \sqrt{d e}}-\frac{a}{3 d x^{3}}+\frac{a e}{d^{2} x}-\frac{b c \sqrt{-c^{2} x^{2}+1}}{6 d x^{2}}+\frac{b \arcsin (c x) e}{d^{2} x}-\frac{b \arcsin (c x)}{3 d x^{3}} \\
& -\frac{1}{8 c d^{3}}\left(b e^{2}(\right. \\
& \left.\sum_{-R I=R o o t O f\left(e Z^{4}+\left(-4 c^{2} d-2 e\right) Z^{2}+e\right)} \frac{\left(_R 1^{2} e-4 c^{2} d-e\right)\left(\operatorname{Iarcsin}(c x) \ln \left(\frac{R 1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}}{R 1}\right)+\operatorname{dilog}\left(\frac{R 1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}}{R 1}\right)\right)}{R_{-} R 1\left(_R 1^{2} e-2 c^{2} d-e\right)}\right) \\
& -\frac{c^{3} b \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{6 d}+\frac{c^{3} b \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}-1\right)}{6 d} \\
& +\frac{1}{8 c d^{3}}\left(b e^{2}(\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\sum_{-R 1=R o o t O f\left(e Z^{4}+\left(-4 c^{2} d-2 e\right) Z^{2}+e\right)} \frac{\left(4 _R l^{2} c^{2} d+__{-} R l^{2} e-e\right)\left(\operatorname{Iarcsin}(c x) \ln \left(\frac{R 1-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}}{R 1}\right)+\operatorname{dilog}\left(\frac{R l-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}}{R 1}\right)\right)}{-R 1\left(_R l^{2} e-2 c^{2} d-e\right)}\right)\right) \\
& +\frac{c b e \ln \left(1+\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{d^{2}}-\frac{c b e \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}-1\right)}{d^{2}}
\end{aligned}
$$

Problem 172: Result is not expressed in closed-form.

$$
\int \frac{a+b \arcsin (c x)}{\left(e x^{2}+d\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 672 leaves, 26 steps):

$$
-\frac{(a+b \arcsin (c x)) \ln \left(1-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}+\frac{(a+b \arcsin (c x)) \ln \left(1+\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}
$$

$$
-\frac{(a+b \arcsin (c x)) \ln \left(1-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}+\frac{(a+b \arcsin (c x)) \ln \left(1+\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}
$$

$$
-\frac{\mathrm{I} b \text { polylog }\left(2,-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}+\frac{\mathrm{I} b \text { polylog }\left(2, \frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}-\frac{\mathrm{I} b \text { polylog }\left(2,-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\left.\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}\right)}\right.}{4(-d)^{3 / 2} \sqrt{e}}
$$

$$
+\frac{\mathrm{I} b \operatorname{polylog}\left(2, \frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}+\frac{-a-b \arcsin (c x)}{4 d \sqrt{e}(\sqrt{-d}-x \sqrt{e})}+\frac{a+b \arcsin (c x)}{4 d \sqrt{e}(\sqrt{-d}+x \sqrt{e})}+\frac{b c \operatorname{arctanh}\left(\frac{-c^{2} x \sqrt{-d}+\sqrt{e}}{\sqrt{c^{2} d+e} \sqrt{-c^{2} x^{2}+1}}\right)}{4 d \sqrt{e} \sqrt{c^{2} d+e}}
$$

$$
+\frac{b c \operatorname{arctanh}\left(\frac{c^{2} x \sqrt{-d}+\sqrt{e}}{\sqrt{c^{2} d+e} \sqrt{-c^{2} x^{2}+1}}\right)}{4 d \sqrt{e} \sqrt{c^{2} d+e}}
$$

Result(type 7, 1686 leaves):
$\frac{c^{2} a x}{2 d\left(c^{2} e x^{2}+c^{2} d\right)}+\frac{a \arctan \left(\frac{x e}{\sqrt{d e}}\right)}{2 d \sqrt{d e}}+\frac{c^{2} b \arcsin (c x) x}{2 d\left(c^{2} e x^{2}+c^{2} d\right)}$

$$
\begin{aligned}
& c^{5} b \sqrt{-\left(2 c^{2} d-2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right) e} \arctan \left(\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}-e\right) e}}\right) d \\
& \left(c^{2} d+e\right) e^{3} \\
& \frac{c^{3} b \sqrt{-\left(2 c^{2} d-2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right) e} \arctan \left(\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}-e\right) e}}\right) \sqrt{\left(c^{2} d+e\right) c^{2} d}}{\left(c^{2} d+e\right) e^{3}} \\
& c^{3} b \sqrt{-\left(2 c^{2} d-2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right) e} \arctan \left(\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}-e\right) e}}\right) \\
& \left(c^{2} d+e\right) e^{2} \\
& \frac{c b \sqrt{-\left(2 c^{2} d-2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right) e} \arctan \left(\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}-e\right) e}}\right) \sqrt{\left(c^{2} d+e\right) c^{2} d}}{2\left(c^{2} d+e\right) d e^{2}} \\
& +\frac{c^{3} b \sqrt{-\left(2 c^{2} d-2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right) e} \arctan \left(\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}-e\right) e}}\right)}{e^{3}} \\
& +\frac{c b \sqrt{-\left(2 c^{2} d-2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right) e} \arctan \left(\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}-e\right) e}}\right) \sqrt{\left(c^{2} d+e\right) c^{2} d}}{d e^{3}} \\
& +\frac{c b \sqrt{-\left(2 c^{2} d-2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right) e} \arctan \left(\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}-e\right) e}}\right)}{2 d e^{2}} \\
& \frac{c^{5} b \sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right) e} \operatorname{arctanh}\left(\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) e}{\sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right) e}}\right) d}{\left(c^{2} d+e\right) e^{3}} \\
& +\frac{c^{3} b \sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right) e} \operatorname{arctanh}\left(\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)_{e}}{\sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right)_{e}}}\right) \sqrt{\left(c^{2} d+e\right) c^{2} d}}{\left(c^{2} d+e\right) e^{3}}
\end{aligned}
$$

$$
-\frac{c^{3} b \sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right)_{e}} \operatorname{arctanh}\left(\frac{\left(\operatorname{Icx}+\sqrt{-c^{2} x^{2}+1}\right)_{e}}{\sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right) e}}\right)}{\left(c^{2} d+e\right) e^{2}}
$$

$$
+\frac{c b \sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right)_{e} \operatorname{arctanh}\left(\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)_{e}}{\sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right)_{e}}}\right) \sqrt{\left(c^{2} d+e\right) c^{2} d}}}{2\left(c^{2} d+e\right) d e^{2}}
$$

$$
+\frac{c^{3} b \sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right)_{e}} \operatorname{arctanh}\left(\frac{\left(I c x+\sqrt{-c^{2} x^{2}+1}\right)_{e}}{\sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right)_{e}}}\right)}{e^{3}}
$$

$$
-\frac{c b \sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right)_{e}} \operatorname{arctanh}\left(\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)_{e}}{\sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right)_{e}}}\right) \sqrt{\left(c^{2} d+e\right) c^{2} d}}{d e^{3}}
$$

$$
+\frac{c b \sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right)_{e}} \operatorname{arctanh}\left(\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)_{e}}{\sqrt{\left(2 c^{2} d+2 \sqrt{\left(c^{2} d+e\right) c^{2} d}+e\right)_{e}}}\right)}{2 d e^{2}}
$$

$$
\left.+\frac{c b\left(\sum_{R l=\text { Rootof }\left(e z^{4}+\left(-4 c^{2} d-2 e\right)\right.} Z^{2}+e\right)}{} \frac{\operatorname{Iarcsin}(c x) \ln \left(\frac{R I-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}}{R I}\right)+\operatorname{dilog}\left(\frac{R l-\mathrm{I} c x-\sqrt{-c^{2} x^{2}+1}}{R I}\right)}{4 d}\right)
$$

Problem 173: Result more than twice size of optimal antiderivative.

$$
\int \frac{x(a+b \arcsin (c x))}{\left(e x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 118 leaves, 4 steps):

$$
\frac{-a-b \arcsin (c x)}{4 e\left(e x^{2}+d\right)^{2}}+\frac{b c\left(2 c^{2} d+e\right) \arctan \left(\frac{x \sqrt{c^{2} d+e}}{\sqrt{d} \sqrt{-c^{2} x^{2}+1}}\right)}{8 d^{3 / 2} e\left(c^{2} d+e\right)^{3 / 2}}+\frac{b c x \sqrt{-c^{2} x^{2}+1}}{8 d\left(c^{2} d+e\right)\left(e x^{2}+d\right)}
$$

Result(type 3, 1016 leaves):
$-\frac{c^{4} a}{4 e\left(c^{2} e x^{2}+c^{2} d\right)^{2}}-\frac{c^{4} b \arcsin (c x)}{4 e\left(c^{2} e x^{2}+c^{2} d\right)^{2}}+\frac{c^{2} b \sqrt{-\left(c x-\frac{\sqrt{-c^{2} e d}}{e}\right)^{2}-\frac{2 \sqrt{-c^{2} e d}\left(c x-\frac{\sqrt{-c^{2} e d}}{e}\right)}{e}+\frac{c^{2} d+e}{e}}}{16 e d\left(c^{2} d+e\right)\left(c x-\frac{\sqrt{-c^{2} e d}}{e}\right)}$

$$
+\frac{1}{16 e^{2} d\left(c^{2} d+e\right) \sqrt{\frac{c^{2} d+e}{e}}}\left(c ^ { 2 } b \sqrt { - c ^ { 2 } e d } \operatorname { l n } \left(\frac { 1 } { c x - \frac { \sqrt { - c ^ { 2 } e d } } { e } } \left(\frac{2\left(c^{2} d+e\right)}{e}-\frac{2 \sqrt{-c^{2} e d}\left(c x-\frac{\sqrt{-c^{2} e d}}{e}\right)}{e}\right.\right.\right.
$$

$$
\left.+2 \sqrt{\frac{c^{2} d+e}{e}} \sqrt{\left.-\left(c x-\frac{\sqrt{-c^{2} e d}}{e}\right)^{2}-\frac{2 \sqrt{-c^{2} e d}\left(c x-\frac{\sqrt{-c^{2} e d}}{e}\right)}{e}+\frac{c^{2} d+e}{e}\right)}\right)
$$

$$
+\frac{c^{2} b \sqrt{-\left(c x+\frac{\sqrt{-c^{2} e d}}{e}\right)^{2}+\frac{2 \sqrt{-c^{2} e d}\left(c x+\frac{\sqrt{-c^{2} e d}}{e}\right)}{e}+\frac{c^{2} d+e}{e}}}{16 e d\left(c^{2} d+e\right)\left(c x+\frac{\sqrt{-c^{2} e d}}{e}\right)}
$$

$$
-\frac{1}{16 e^{2} d\left(c^{2} d+e\right) \sqrt{\frac{c^{2} d+e}{e}}}\left(c ^ { 2 } b \sqrt { - c ^ { 2 } e d } \operatorname { l n } \left(\frac { 1 } { c x + \frac { \sqrt { - c ^ { 2 } e d } } { e } } \left(\frac{2\left(c^{2} d+e\right)}{e}+\frac{2 \sqrt{-c^{2} e d}\left(c x+\frac{\sqrt{-c^{2} e d}}{e}\right)}{e}\right.\right.\right.
$$

$$
\left.+2 \sqrt{\frac{c^{2} d+e}{e}} \sqrt{\left.-\left(c x+\frac{\sqrt{-c^{2} e d}}{e}\right)^{2}+\frac{2 \sqrt{-c^{2} e d}\left(c x+\frac{\sqrt{-c^{2} e d}}{e}\right)}{e}+\frac{c^{2} d+e}{e}\right)}\right)
$$

Problem 174: Unable to integrate problem.

$$
\int \frac{a+b \arcsin (c x)}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 60 leaves, 6 steps):

$$
\frac{b \arctan \left(\frac{\sqrt{e} \sqrt{-c^{2} x^{2}+1}}{c \sqrt{e x^{2}+d}}\right)}{d \sqrt{e}}+\frac{x(a+b \arcsin (c x))}{d \sqrt{e x^{2}+d}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{a+b \arcsin (c x)}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 175: Unable to integrate problem.

$$
\int(f x)^{m}\left(e x^{2}+d\right)(a+b \arcsin (c x)) \mathrm{d} x
$$

Optimal(type 5, 155 leaves, 4 steps):
$\frac{d(f x)^{1+m}(a+b \arcsin (c x))}{f(1+m)}+\frac{e(f x)^{3+m}(a+b \arcsin (c x))}{f^{3}(3+m)}$

$$
-\frac{b\left(e(1+m)(2+m)+c^{2} d(3+m)^{2}\right)(f x)^{2+m} \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right], c^{2} x^{2}\right)}{c f^{2}(1+m)(2+m)(3+m)^{2}}+\frac{b e(f x)^{2+m} \sqrt{-c^{2} x^{2}+1}}{c f^{2}(3+m)^{2}}
$$

Result(type 8, 23 leaves):

$$
\int(f x)^{m}\left(e x^{2}+d\right)(a+b \arcsin (c x)) \mathrm{d} x
$$

Problem 178: Unable to integrate problem.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 4, 773 leaves, 22 steps):

$$
\frac{(a+b \arcsin (c x))^{2} \ln \left(1-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}-\frac{(a+b \arcsin (c x))^{2} \ln \left(1+\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}
$$

$$
+\frac{(a+b \arcsin (c x))^{2} \ln \left(1-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}-\frac{(a+b \arcsin (c x))^{2} \ln \left(1+\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}
$$

$$
+\frac{\mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{\sqrt{-d} \sqrt{e}}-\frac{\mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2, \frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{\sqrt{-d} \sqrt{e}}
$$

$$
+\frac{\mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2,-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{\sqrt{-d} \sqrt{e}}-\frac{\mathrm{I} b(a+b \arcsin (c x)) \operatorname{polylog}\left(2, \frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{\sqrt{-d} \sqrt{e}}
$$

$$
-\frac{b^{2} \operatorname{polylog}\left(3,-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{\sqrt{-d} \sqrt{e}}+\frac{b^{2} \operatorname{polylog}\left(3, \frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}-\sqrt{c^{2} d+e}}\right)}{\sqrt{-d} \sqrt{e}}-\frac{b^{2} \operatorname{polylog}\left(3,-\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\left.\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}\right)}\right.}{\sqrt{-d} \sqrt{e}}
$$

$$
+\frac{b^{2} \operatorname{polylog}\left(3, \frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{e}}{\mathrm{I} c \sqrt{-d}+\sqrt{c^{2} d+e}}\right)}{\sqrt{-d} \sqrt{e}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{(a+b \arcsin (c x))^{2}}{e x^{2}+d} \mathrm{~d} x
$$

Problem 186: Result more than twice size of optimal antiderivative.

$$
\int\left(e x^{2}+d\right)(a+b \arcsin (c x))^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 374 leaves, 32 steps):
$d x(a+b \arcsin (c x))^{3 / 2}+\frac{e x^{3}(a+b \arcsin (c x))^{3 / 2}}{3}+\frac{\left.b^{3 / 2 e \cos \left(\frac{3 a}{b}\right) \operatorname{FresnelC}\left(\frac{\sqrt{6} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{b}}\right) \sqrt{6} \sqrt{\pi}}\right) 144 c^{3}}{1}$

$-\frac{3 b^{3 / 2} e \text { FresnelS }\left(\frac{\sqrt{2} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{b}}\right) \sin \left(\frac{a}{b}\right) \sqrt{2} \sqrt{\pi}}{16 c^{3}}+\frac{3 b d \sqrt{-c^{2} x^{2}+1} \sqrt{a+b \arcsin (c x)}}{2 c}+\frac{b e \sqrt{-c^{2} x^{2}+1} \sqrt{a+b \arcsin (c x)}}{3 c^{3}}$
$+\frac{b e x^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{a+b \arcsin (c x)}}{6 c}$
Result(type 4, 836 leaves):

$$
\begin{aligned}
& -\frac{1}{144 c^{3} \sqrt{a+b \arcsin (c x)}}\left(108 \sin \left(\frac{a}{b}\right) \sqrt{2} \operatorname{FresnelS}\left(\frac{\sqrt{2} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sqrt{a+b \arcsin (c x)} \sqrt{\pi} \sqrt{\frac{1}{b}} b^{2} c^{2} d\right. \\
& +108 \cos \left(\frac{a}{b}\right) \sqrt{2} \text { FresnelC }\left(\frac{\sqrt{2} \sqrt{a+b \arcsin (c x)}) \sqrt{a+b \arcsin (c x)} \sqrt{\pi} \sqrt{\frac{1}{b}} b^{2} c^{2} d}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \\
& -\sqrt{2} \sin \left(\frac{3 a}{b}\right) \text { FresnelS }\left(\frac{\sqrt{2} \sqrt{3} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sqrt{a+b \arcsin (c x)} \sqrt{\pi} \sqrt{3} \sqrt{\frac{1}{b}} b^{2} e \\
& -\sqrt{2} \cos \left(\frac{3 a}{b}\right) \text { FresnelC }\left(\frac{\sqrt{2} \sqrt{3} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sqrt{a+b \arcsin (c x)} \sqrt{\pi} \sqrt{3} \sqrt{\frac{1}{b}} b^{2} e \\
& +27 \sin \left(\frac{a}{b}\right) \sqrt{2} \text { FresnelS }\left(\frac{\sqrt{2} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sqrt{a+b \arcsin (c x)} \sqrt{\pi} \sqrt{\frac{1}{b}} b^{2} e
\end{aligned}
$$

$$
\begin{aligned}
& +27 \cos \left(\frac{a}{b}\right) \sqrt{2} \text { FresnelC }\left(\frac{\sqrt{2} \sqrt{a+b \arcsin (c x)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sqrt{a+b \arcsin (c x)} \sqrt{\pi} \sqrt{\frac{1}{b}} b^{2} e-144 \arcsin (c x)^{2} \sin \left(\frac{a+b \arcsin (c x)}{b}-\frac{a}{b}\right) b^{2} c^{2} d \\
& -288 \arcsin (c x) \sin \left(\frac{a+b \arcsin (c x)}{b}-\frac{a}{b}\right) a b c^{2} d-216 \arcsin (c x) \cos \left(\frac{a+b \arcsin (c x)}{b}-\frac{a}{b}\right) b^{2} c^{2} d+12 \arcsin (c x)^{2} \sin \left(\frac{3(a+b \arcsin (c x))}{b}\right. \\
& \left.-\frac{3 a}{b}\right) b^{2} e-36 \arcsin (c x)^{2} \sin \left(\frac{a+b \arcsin (c x)}{b}-\frac{a}{b}\right) b^{2} e-144 \sin \left(\frac{a+b \arcsin (c x)}{b}-\frac{a}{b}\right) a^{2} c^{2} d-216 \cos \left(\frac{a+b \arcsin (c x)}{b}-\frac{a}{b}\right) a b c^{2} d \\
& +24 \arcsin (c x) \sin \left(\frac{3(a+b \arcsin (c x))}{b}-\frac{3 a}{b}\right) a b e-72 \arcsin (c x) \sin \left(\frac{a+b \arcsin (c x)}{b}-\frac{a}{b}\right) a b e-54 \arcsin (c x) \cos \left(\frac{a+b \arcsin (c x)}{b}\right. \\
& \left.-\frac{a}{b}\right) b^{2} e+6 \arcsin (c x) \cos \left(\frac{3(a+b \arcsin (c x))}{b}-\frac{3 a}{b}\right) b^{2} e+12 \sin \left(\frac{3(a+b \arcsin (c x))}{b}-\frac{3 a}{b}\right) a^{2} e-36 \sin \left(\frac{a+b \arcsin (c x)}{b}-\frac{a}{b}\right) a^{2} e \\
& \left.-54 \cos \left(\frac{a+b \arcsin (c x)}{b}-\frac{a}{b}\right) a b e+6 \cos \left(\frac{3(a+b \arcsin (c x))}{b}-\frac{3 a}{b}\right) a b e\right)
\end{aligned}
$$

Test results for the 131 problems in "5.1.5 Inverse sine functions.txt"

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \arcsin (c x)}{(e x+d)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 124 leaves, 4 steps):

$$
\frac{-a-b \arcsin (c x)}{2 e(e x+d)^{2}}+\frac{b c^{3} d \arctan \left(\frac{c^{2} d x+e}{\sqrt{d^{2} c^{2}-e^{2}} \sqrt{-c^{2} x^{2}+1}}\right)}{2 e\left(d^{2} c^{2}-e^{2}\right)^{3 / 2}}+\frac{b c \sqrt{-c^{2} x^{2}+1}}{2\left(d^{2} c^{2}-e^{2}\right)(e x+d)}
$$

Result(type 3, 300 leaves):
$-\frac{c^{2} a}{2(c e x+c d)^{2} e}-\frac{c^{2} b \arcsin (c x)}{2(c e x+c d)^{2} e}+\frac{c^{2} b \sqrt{-\left(c x+\frac{c d}{e}\right)^{2}+\frac{2 c d\left(c x+\frac{c d}{e}\right)}{e}-\frac{d^{2} c^{2}-e^{2}}{e^{2}}}}{2 e\left(d^{2} c^{2}-e^{2}\right)\left(c x+\frac{c d}{e}\right)}$

$$
2 e^{2}\left(d^{2} c^{2}-e^{2}\right) \sqrt{-\frac{d^{2} c^{2}-e^{2}}{e^{2}}}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (c x))^{2}}{(e x+d)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 407 leaves, 13 steps):

$$
\begin{aligned}
& \left.-\frac{(a+b \arcsin (c x))^{2}}{2 e(e x+d)^{2}}-\frac{b^{2} c^{2} \ln (e x+d)}{e\left(d^{2} c^{2}-e^{2}\right)}-\frac{\mathrm{I} b c^{3} d(a+b \arcsin (c x)) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e\left(d^{2} c^{2}-e^{2}\right)^{3 / 2}}\right) \\
& \left.\left.+\frac{\mathrm{I} b c^{3} d(a+b \arcsin (c x)) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e\left(d^{2} c^{2}-e^{2}\right)^{3 / 2}}\right) \frac{b^{2} c^{3} d \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e\left(d^{2} c^{2}-e^{2}\right)^{3 / 2}}\right) \\
& \left.+\frac{b^{2} c^{3} d \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right.}{c\left(d^{2} c^{2}-e^{2}\right)^{3 / 2}}\right.}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right) \\
& +\frac{b c(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{\left(d^{2} c^{2}-e^{2}\right)(e x+d)}
\end{aligned}
$$

Result(type 4, 1172 leaves):

$$
\begin{aligned}
& -\frac{c^{2} a^{2}}{2(c e x+c d)^{2} e}-\frac{\mathrm{I} c^{3} b^{2} \sqrt{-d^{2} c^{2}+e^{2}} d \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{\left(d^{2} c^{2}-e^{2}\right)^{2} e}-\frac{\mathrm{I} c^{4} b^{2} \arcsin (c x) d^{2}}{(c e x+c d)^{2}\left(d^{2} c^{2}-e^{2}\right) e} \\
& -\frac{2 \mathrm{I} c^{4} b^{2} \arcsin (c x) x d}{(c e x+c d)^{2}\left(d^{2} c^{2}-e^{2}\right)}-\frac{c^{4} b^{2} \arcsin (c x)^{2} d^{2}}{2(c e x+c d)^{2}\left(d^{2} c^{2}-e^{2}\right) e}+\frac{c^{3} b^{2} \arcsin (c x) e \sqrt{-c^{2} x^{2}+1} x}{(c e x+c d)^{2}\left(d^{2} c^{2}-e^{2}\right)}+\frac{c^{3} b^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} d}{(c e x+c d)^{2}\left(d^{2} c^{2}-e^{2}\right)} \\
& +\frac{c^{2} b^{2} \arcsin (c x)^{2} e}{2(c e x+c d)^{2}\left(d^{2} c^{2}-e^{2}\right)}+\frac{2 c^{2} b^{2} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{\left(d^{2} c^{2}-e^{2}\right) e}-\frac{c^{2} b^{2} \ln \left(2 \mathrm{I} c d\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2} e-e\right)}{\left(d^{2} c^{2}-e^{2}\right) e} \\
& -\frac{c^{3} b^{2} \sqrt{-d^{2} c^{2}+e^{2}} d \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{\left(e^{2}\right.} \\
& +\frac{c^{3} b^{2} \sqrt{-d^{2} c^{2}+e^{2}} d \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{\left(d^{2} c^{2}-e^{2}\right)^{2} e} \\
& +\frac{\mathrm{I} c^{3} b^{2} \sqrt{-d^{2} c^{2}+e^{2}} d \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{\left(d^{2} c^{2}-e^{2}\right)^{2} e}-\frac{\mathrm{I} c^{4} b^{2} \arcsin (c x) e x^{2}}{(c e x+c d)^{2}\left(d^{2} c^{2}-e^{2}\right)}-\frac{c^{2} a b \arcsin (c x)}{(c e x+c d)^{2} e}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{c^{2} a b \sqrt{-\left(c x+\frac{c d}{e}\right)^{2}+\frac{2 c d\left(c x+\frac{c d}{e}\right)}{e}-\frac{d^{2} c^{2}-e^{2}}{e^{2}}}}{e\left(d^{2} c^{2}-e^{2}\right)\left(c x+\frac{c d}{e}\right)} \\
& -\frac{c^{3} a b d \ln \left(\frac{-\frac{2\left(d^{2} c^{2}-e^{2}\right)}{e^{2}}+\frac{2 c d\left(c x+\frac{c d}{e}\right)}{e}+2 \sqrt{-\frac{d^{2} c^{2}-e^{2}}{e^{2}}} \sqrt{c x+\frac{c d}{e}}}{e^{2}\left(d^{2} c^{2}-e^{2}\right) \sqrt{-\frac{d^{2} c^{2}-e^{2}}{e^{2}}}}\right.}{}
\end{aligned}
$$

Problem 12: Unable to integrate problem.

$$
\int \frac{(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{(g x+f)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 814 leaves, 35 steps):

$$
\begin{aligned}
& -\frac{a \sqrt{-c^{2} d x^{2}+d}}{g(g x+f)}-\frac{b \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{g(g x+f)}-\frac{a c^{3} f^{2} \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{g^{2}\left(c^{2} f^{2}-g^{2}\right) \sqrt{-c^{2} x^{2}+1}}-\frac{b c^{3} f^{2} \arcsin (c x)^{2} \sqrt{-c^{2} d x^{2}+d}}{2 g^{2}\left(c^{2} f^{2}-g^{2}\right) \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{\left(f x c^{2}+g\right)^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2 b c\left(c^{2} f^{2}-g^{2}\right)(g x+f)^{2} \sqrt{-c^{2} x^{2}+1}}+\frac{b c \ln (g x+f) \sqrt{-c^{2} d x^{2}+d}}{g^{2} \sqrt{-c^{2} x^{2}+1}}+\frac{a c^{2} f \arctan \left(\frac{f x c^{2}+g}{\sqrt{c^{2} f^{2}-g^{2}} \sqrt{-c^{2} x^{2}+1}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{2} \sqrt{c^{2} f^{2}-g^{2}} \sqrt{-c^{2} x^{2}+1}} \\
& -\frac{\mathrm{I} b c^{2} f \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{2} \sqrt{c^{2} f^{2}-g^{2}} \sqrt{-c^{2} x^{2}+1}}+\frac{\mathrm{I} b c^{2} f \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{2} \sqrt{c^{2} f^{2}-g^{2}} \sqrt{-c^{2} x^{2}+1}} \\
& -\frac{b c^{2} f \text { polylog }\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{2} \sqrt{c^{2} f^{2}-g^{2}} \sqrt{-c^{2} x^{2}+1}}+\frac{b c^{2} f \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{2} \sqrt{c^{2} f^{2}-g^{2}} \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}{2 b c(g x+f)^{2}} \\
& \text { Result(type 9, } 1580 \text { leaves): }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a\left(-\left(x+\frac{f}{g}\right)^{2} c^{2} d+\frac{2 c^{2} d f\left(x+\frac{f}{g}\right)}{g}-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}\right)^{3 / 2}}{d\left(c^{2} f^{2}-g^{2}\right)\left(x+\frac{f}{g}\right)}-\frac{a c^{2} f \sqrt{-\left(x+\frac{f}{g}\right)^{2} c^{2} d+\frac{2 c^{2} d f\left(x+\frac{f}{g}\right)}{g}-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}}}{g\left(c^{2} f^{2}-g^{2}\right)} \\
& \left.-\frac{a c^{4} f^{2} d \arctan \left(\frac{\sqrt{c^{2} d} x}{\sqrt{-\left(x+\frac{f}{g}\right)^{2} c^{2} d+\frac{2 c^{2} d f\left(x+\frac{f}{g}\right)}{g}-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}}}\right)}{g^{2}\left(c^{2} f^{2}-g^{2}\right) \sqrt{c^{2} d}}\right) \\
& a c^{4} f^{3} d \ln \left(\frac{\left.-\frac{2 d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}+\frac{2 c^{2} d f\left(x+\frac{f}{g}\right)}{g}+2 \sqrt{-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}} \sqrt{x+\frac{f}{g}}\right)}{\left(x+\frac{f}{g}\right)^{2} c^{2} d+\frac{2 c^{2} d f\left(x+\frac{f}{g}\right)}{g}-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}}\right) \\
& g^{3}\left(c^{2} f^{2}-g^{2}\right) \sqrt{-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}} \\
& +\frac{a c^{2} f d \ln \left(\frac{\left.-\frac{2 d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}+\frac{2 c^{2} d f\left(x+\frac{f}{g}\right)}{g}+2 \sqrt{-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}} \sqrt{x+\left(x+\frac{f}{g}\right.}\right)^{2} c^{2} d+\frac{2 c^{2} d f\left(x+\frac{f}{g}\right)}{g}-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}}{g\left(c^{2} f^{2}-g^{2}\right) \sqrt{-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}}}\right.}{\sqrt{g^{2}}} \\
& +\frac{a c^{2} \sqrt{-\left(x+\frac{f}{g}\right)^{2} c^{2} d+\frac{2 c^{2} d f\left(x+\frac{f}{g}\right)}{g}-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}} x}}{c^{2} f^{2}-g^{2}}+\frac{a c^{2} d \arctan \sqrt{-\left(x+\frac{f}{g}\right)^{2} c^{2} d+\frac{2 c^{2} d f\left(x+\frac{f}{g}\right)}{g}-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}}}{\left(c^{2} f^{2}-g^{2}\right) \sqrt{c^{2} d}} \\
& +b\left(\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{2} c}{2\left(c^{2} x^{2}-1\right) g^{2}}-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\mathrm{I} \sqrt{-c^{2} x^{2}+1} x c+c^{2} x^{2}-1\right) \arcsin (c x)\left(f x c^{2}+g-\mathrm{I} \sqrt{-c^{2} x^{2}+1} c f\right)}{\left(c^{2} x^{2}-1\right) g^{2}(g x+f)}\right. \\
& +\frac{1}{\left(c^{2} x^{2}-1\right) g^{2}\left(c^{2} f^{2}-g^{2}\right)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(-\mathrm{I} \operatorname{dilog}\left(\frac{\mathrm{I} c f}{\mathrm{I} c f-\sqrt{-c^{2} f^{2}+g^{2}}}+\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{\mathrm{I} c f-\sqrt{-c^{2} f^{2}+g^{2}}}\right.\right.\right.
\end{aligned}
$$

$\left.-\frac{\sqrt{-c^{2} f^{2}+g^{2}}}{\mathrm{I} c f-\sqrt{-c^{2} f^{2}+g^{2}}}\right) \sqrt{-c^{2} f^{2}+g^{2}} c f+\mathrm{I} \operatorname{dilog}\left(\frac{\mathrm{I} c f}{\mathrm{I} c f+\sqrt{-c^{2} f^{2}+g^{2}}}+\frac{\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{\mathrm{I} c f+\sqrt{-c^{2} f^{2}+g^{2}}}+\frac{\sqrt{-c^{2} f^{2}+g^{2}}}{\mathrm{I} c f+\sqrt{-c^{2} f^{2}+g^{2}}}\right) \sqrt{-c^{2} f^{2}+g^{2}} c f$ $+\arcsin (c x) \ln \left(\frac{\mathrm{I} c f+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g-\sqrt{-c^{2} f^{2}+g^{2}}}{\mathrm{I} c f-\sqrt{-c^{2} f^{2}+g^{2}}}\right) \sqrt{-c^{2} f^{2}+g^{2}} c f$
$-\arcsin (c x) \ln \left(\frac{\mathrm{I} c f+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g+\sqrt{-c^{2} f^{2}+g^{2}}}{\mathrm{I} c f+\sqrt{-c^{2} f^{2}+g^{2}}}\right) \sqrt{-c^{2} f^{2}+g^{2}} c f-2 \Im(\arcsin (c x)) c^{2} f^{2}+2 \ln \left(\mathrm{e}^{\mathrm{I} \Re(\arcsin (c x))}\right) c^{2} f^{2}-\ln (2 \mathrm{I} c f(\mathrm{I} c x$
$\left.\left.+\sqrt{-c^{2} x^{2}+1}\right)+g\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}-g\right) c^{2} f^{2}+2 \Im(\arcsin (c x)) g^{2}-2 \ln \left(\mathrm{e}^{\mathrm{I} \Re(\arcsin (c x))}\right) g^{2}+\ln \left(2 \mathrm{I} c f\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+g(\mathrm{I} c x\right.$ $\left.\left.\left.\left.\left.+\sqrt{-c^{2} x^{2}+1}\right)^{2}-g\right) g^{2}\right) c\right)\right)$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))}{g x+f} \mathrm{~d} x
$$

Optimal(type 4, 999 leaves, 29 steps):

$$
\begin{aligned}
& -\frac{a d(c f-g)(c f+g) \sqrt{-c^{2} d x^{2}+d}}{g^{3}}-\frac{b d(c f-g)(c f+g) \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{g^{3}}+\frac{c^{2} d f x(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{2 g^{2}} \\
& +\frac{d\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{3 g}-\frac{b c d x \sqrt{-c^{2} d x^{2}+d}}{3 g \sqrt{-c^{2} x^{2}+1}}+\frac{b c d(c f-g)(c f+g) x \sqrt{-c^{2} d x^{2}+d}}{g^{3} \sqrt{-c^{2} x^{2}+1}}-\frac{b c^{3} d f x^{2} \sqrt{-c^{2} d x^{2}+d}}{4 g^{2} \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{b c^{3} d x^{3} \sqrt{-c^{2} d x^{2}+d}}{9 g \sqrt{-c^{2} x^{2}+1}}+\frac{c d f(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{4 b g^{2} \sqrt{-c^{2} x^{2}+1}}-\frac{c d(c f-g)(c f+g) x(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2 b g^{3} \sqrt{-c^{2} x^{2}+1}} \\
& -\frac{d\left(c^{2} f^{2}-g^{2}\right)^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2 b c g^{4}(g x+f) \sqrt{-c^{2} x^{2}+1}}+\frac{a d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \arctan \left(\frac{f x c^{2}+g}{\left.\sqrt{c^{2} f^{2}-g^{2} \sqrt{-c^{2} x^{2}+1}}\right) \sqrt{-c^{2} d x^{2}+d}}\right.}{g^{4} \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

$$
+\frac{\mathrm{I} b d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}}
$$

$$
-\frac{\mathrm{I} b d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}}
$$

$$
\begin{aligned}
& -\frac{b d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{b d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}}-\frac{d(c f-g)(c f+g)(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}{2 b c g^{2}(g x+f)}
\end{aligned}
$$

Result(type ?, 2759 leaves): Display of huge result suppressed!
Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{(g x+f)^{2}(a+b \arcsin (c x))}{\sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 3, 242 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{2 f g\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))}{c^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{g^{2} x\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))}{2 c^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{2 b f g x \sqrt{-c^{2} x^{2}+1}}{c \sqrt{-c^{2} d x^{2}+d}}+\frac{b g^{2} x^{2} \sqrt{-c^{2} x^{2}+1}}{4 c \sqrt{-c^{2} d x^{2}+d}} \\
& \quad+\frac{f^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{2 b c \sqrt{-c^{2} d x^{2}+d}}+\frac{g^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{4 b c^{3} \sqrt{-c^{2} d x^{2}+d}}
\end{aligned}
$$

Result(type 3, 548 leaves):
$\frac{a f^{2} \arctan \left(\frac{\sqrt{c^{2} d} x}{\sqrt{-c^{2} d x^{2}+d}}\right)}{\sqrt{c^{2} d}}-\frac{a g^{2} x \sqrt{-c^{2} d x^{2}+d}}{2 c^{2} d}+\frac{a g^{2} \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{2 c^{2} \sqrt{c^{2} d}}-\frac{2 a f g \sqrt{-c^{2} d x^{2}+d}}{c^{2} d}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{2} \sqrt{-c^{2} x^{2}+1} x^{2}}{4 c d\left(c^{2} x^{2}-1\right)}$
$-\frac{2 b g f \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} x}{c d\left(c^{2} x^{2}-1\right)}-\frac{2 b g f \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x^{2}}{d\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{2} f^{2}}{2 c d\left(c^{2} x^{2}-1\right)}$
$-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{2} g^{2}}{4 c^{3} d\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{2} \arcsin (c x) x^{3}}{2 d\left(c^{2} x^{2}-1\right)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{2} \sqrt{-c^{2} x^{2}+1}}{8 c^{3} d\left(c^{2} x^{2}-1\right)}$
$+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{2} \arcsin (c x) x}{2 c^{2} d\left(c^{2} x^{2}-1\right)}+\frac{2 b g f \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x)}{c^{2} d\left(c^{2} x^{2}-1\right)}$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \frac{(g x+f)^{3}(a+b \arcsin (c x))}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 289 leaves, 11 steps):
$\frac{\left(g\left(3 c^{2} f^{2}+g^{2}\right)+c^{2} f\left(c^{2} f^{2}+3 g^{2}\right) x\right)(a+b \arcsin (c x))}{c^{4} d \sqrt{-c^{2} d x^{2}+d}}+\frac{g^{3}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))}{c^{4} d \sqrt{-c^{2} d x^{2}+d}}-\frac{b g^{3} x \sqrt{-c^{2} x^{2}+1}}{c^{3} d \sqrt{-c^{2} d x^{2}+d}}$
$-\frac{3 f g^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{2 b c^{3} d \sqrt{-c^{2} d x^{2}+d}}+\frac{b(c f+g)^{3} \ln (-c x+1) \sqrt{-c^{2} x^{2}+1}}{2 c^{4} d \sqrt{-c^{2} d x^{2}+d}}+\frac{b(c f-g)^{3} \ln (c x+1) \sqrt{-c^{2} x^{2}+1}}{2 c^{4} d \sqrt{-c^{2} d x^{2}+d}}$
Result(type 3, 1157 leaves):

$$
\begin{aligned}
& \frac{a f^{3} x}{d \sqrt{-c^{2} d x^{2}+d}}-\frac{a g^{3} x^{2}}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}+\frac{2 a g^{3}}{d c^{4} \sqrt{-c^{2} d x^{2}+d}}+\frac{3 a f g^{2} x}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{3 a f g^{2} \arctan \left(\frac{\sqrt{c^{2} d} x}{\sqrt{-c^{2} d x^{2}+d}}\right)}{c^{2} d \sqrt{c^{2} d}}+\frac{3 a f^{2} g}{c^{2} d \sqrt{-c^{2} d x^{2}+d}} \\
&+\frac{\mathrm{I} b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} f^{3} \arcsin (c x)}{c d^{2}\left(c^{2} x^{2}-1\right)}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}-\mathrm{I}\right) f g^{2}}{c^{3} d^{2}\left(c^{2} x^{2}-1\right)} \\
&+\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}+\mathrm{I}\right) f^{2} g}{c^{2} d^{2}\left(c^{2} x^{2}-1\right)}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}+\mathrm{I}\right) f g^{2}}{c^{3} d^{2}\left(c^{2} x^{2}-1\right)} \\
&+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \sqrt{-c^{2} x^{2}+1} x}{c^{3} d^{2}\left(c^{2} x^{2}-1\right)}+\frac{3 \mathrm{I} b \sqrt{-c^{2} x^{2}+1} \sqrt{-d\left(c^{2} x^{2}-1\right)} f \arcsin (c x) g^{2}}{c^{3} d^{2}\left(c^{2} x^{2}-1\right)}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x f g^{2}}{c^{2} d^{2}\left(c^{2} x^{2}-1\right)} \\
&-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}-\mathrm{I}\right) f^{2} g}{c^{2} d^{2}\left(c^{2} x^{2}-1\right)}+\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{2} f g^{2}}{2 c^{3} d^{2}\left(c^{2} x^{2}-1\right)} \\
&-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \arcsin (c x) x^{2}}{c^{2} d^{2}\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) x f^{3}}{d^{2}\left(c^{2} x^{2}-1\right)}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \arcsin (c x) f^{2} g}{c^{2} d^{2}\left(c^{2} x^{2}-1\right)} \\
&-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}-\mathrm{I}\right) f^{3}\right.}{c d^{2}\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \ln \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}-\mathrm{I}\right) g^{3}}{c^{3} d^{2}\left(c^{2} x^{2}-1\right)} \\
& c d^{2}\left(c^{2} x^{2}-1\right) \\
& c^{4} d^{2}\left(c^{2} x^{2}-1\right) \\
&-\frac{b b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \ln \left(\mathrm{I} x+\sqrt{-c^{2} x^{2}+1}+\mathrm{I}\right) g^{3}}{\left(c^{4} d^{2}-1\right)} g^{3} \operatorname{arcsin(cx)}
\end{aligned}
$$

Problem 18: Result more than twice size of optimal antiderivative.

$$
\int \frac{(g x+f)(a+b \arcsin (c x))}{\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 202 leaves, 6 steps):

$$
\frac{2 f x(a+b \arcsin (c x))}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{\left(f x c^{2}+g\right)(a+b \arcsin (c x))}{3 c^{2} d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}-\frac{b(g x+f)}{6 c d^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}-\frac{b g \operatorname{arctanh}(c x) \sqrt{-c^{2} x^{2}+1}}{6 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}
$$

$$
+\frac{b f \ln \left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} x^{2}+1}}{3 c d^{2} \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type ?, 2235 leaves): Display of huge result suppressed!
Problem 19: Result more than twice size of optimal antiderivative.

$$
\int(g x+f)^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d} \mathrm{~d} x
$$

Optimal(type 3, 647 leaves, 23 steps):

$$
\begin{aligned}
& \frac{8 b^{2} f g \sqrt{-c^{2} d x^{2}+d}}{9 c^{2}}-\frac{b^{2} f^{2} x \sqrt{-c^{2} d x^{2}+d}}{4}+\frac{b^{2} g^{2} x \sqrt{-c^{2} d x^{2}+d}}{64 c^{2}}-\frac{b^{2} g^{2} x^{3} \sqrt{-c^{2} d x^{2}+d}}{32}+\frac{4 b^{2} f g\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{27 c^{2}} \\
& +\frac{f^{2} x(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2}-\frac{g^{2} x(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{8 c^{2}}+\frac{g^{2} x^{3}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{4} \\
& -\frac{2 f g\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{3 c^{2}}+\frac{b^{2} f^{2} \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{4 c \sqrt{-c^{2} x^{2}+1}}-\frac{b^{2} g^{2} \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{64 c^{3} \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

$$
+\frac{4 b f g x(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{3 c \sqrt{-c^{2} x^{2}+1}}-\frac{b c f^{2} x^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{2 \sqrt{-c^{2} x^{2}+1}}+\frac{b g^{2} x^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{8 c \sqrt{-c^{2} x^{2}+1}}
$$

$$
-\frac{4 b c f g x^{3}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{9 \sqrt{-c^{2} x^{2}+1}}-\frac{b c g^{2} x^{4}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{8 \sqrt{-c^{2} x^{2}+1}}+\frac{f^{2}(a+b \arcsin (c x))^{3} \sqrt{-c^{2} d x^{2}+d}}{6 b c \sqrt{-c^{2} x^{2}+1}}
$$

$$
+\frac{g^{2}(a+b \arcsin (c x))^{3} \sqrt{-c^{2} d x^{2}+d}}{24 b c^{3} \sqrt{-c^{2} x^{2}+1}}
$$

Result(type ?, 2050 leaves): Display of huge result suppressed!
Problem 20: Result more than twice size of optimal antiderivative.

$$
\int(g x+f)\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 547 leaves, 19 steps):

$$
\begin{aligned}
& \frac{16 b^{2} d g \sqrt{-c^{2} d x^{2}+d}}{75 c^{2}}-\frac{15 b^{2} d f x \sqrt{-c^{2} d x^{2}+d}}{64}+\frac{8 b^{2} d g\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{225 c^{2}}-\frac{b^{2} d f x\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{32} \\
& +\frac{2 b^{2} d g\left(-c^{2} x^{2}+1\right)^{2} \sqrt{-c^{2} d x^{2}+d}}{125 c^{2}}+\frac{b d f\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{8 c}+\frac{3 d f x(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{8} \\
& +\frac{d f x\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{4}-\frac{d g\left(-c^{2} x^{2}+1\right)^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{5 c^{2}}+\frac{9 b^{2} d f \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{64 c \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

```
+ 2bdgx(a+b\operatorname{arcsin}(cx))\sqrt{}{-\mp@subsup{c}{}{2}d\mp@subsup{x}{}{2}+d}}-\frac{3bcdf\mp@subsup{x}{}{2}(a+b\operatorname{arcsin}(cx))\sqrt{}{-\mp@subsup{c}{}{2}d\mp@subsup{x}{}{2}+d}}{-2bcdg\mp@subsup{x}{}{3}(a+b\operatorname{arcsin}(cx))\sqrt{}{-\mp@subsup{c}{}{2}d\mp@subsup{x}{}{2}+d}
    5c\sqrt{}{-\mp@subsup{c}{}{2}\mp@subsup{x}{}{2}+1}
```

$+\frac{2 b c^{3} d g x^{5}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{25 \sqrt{-c^{2} x^{2}+1}}+\frac{d f(a+b \arcsin (c x))^{3} \sqrt{-c^{2} d x^{2}+d}}{8 b c \sqrt{-c^{2} x^{2}+1}}$
Result(type 3, 1639 leaves):
$-\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g d \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x}{5\left(c^{2} x^{2}-1\right) c}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f d c^{3} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{4}}{8\left(c^{2} x^{2}-1\right)}$
$+\frac{5 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f d c \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{2}}{8\left(c^{2} x^{2}-1\right)}+\frac{374 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g d x^{2}}{1125\left(c^{2} x^{2}-1\right)}+\frac{17 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f d x}{64\left(c^{2} x^{2}-1\right)}-\frac{298 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g d}{1125\left(c^{2} x^{2}-1\right) c^{2}}$
$-\frac{19 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f d c^{2} x^{3}}{64\left(c^{2} x^{2}-1\right)}-\frac{3 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g d \arcsin (c x)^{2} x^{2}}{5\left(c^{2} x^{2}-1\right)}-\frac{5 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f d \arcsin (c x)^{2} x}{8\left(c^{2} x^{2}-1\right)}+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g d c^{4} x^{6}}{125\left(c^{2} x^{2}-1\right)}$
$-\frac{94 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g d c^{2} x^{4}}{1125\left(c^{2} x^{2}-1\right)}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g d \arcsin (c x)^{2}}{5\left(c^{2} x^{2}-1\right) c^{2}}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f d c^{4} x^{5}}{32\left(c^{2} x^{2}-1\right)}+\frac{3 a^{2} f d x \sqrt{-c^{2} d x^{2}+d}}{8}$
$+\frac{3 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g d c^{2} \arcsin (c x)^{2} x^{4}}{5\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f d c^{4} \arcsin (c x)^{2} x^{5}}{4\left(c^{2} x^{2}-1\right)}+\frac{7 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f d c^{2} \arcsin (c x)^{2} x^{3}}{8\left(c^{2} x^{2}-1\right)}$
$-\frac{17 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f d \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{64 c\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{3} f d}{8 c\left(c^{2} x^{2}-1\right)}+\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g d \arcsin (c x)}{5\left(c^{2} x^{2}-1\right) c^{2}}$
$-\frac{6 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g d \arcsin (c x) x^{2}}{5\left(c^{2} x^{2}-1\right)}-\frac{17 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} f d \sqrt{-c^{2} x^{2}+1}}{64 c\left(c^{2} x^{2}-1\right)}-\frac{5 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} f d \arcsin (c x) x}{4\left(c^{2} x^{2}-1\right)}$
$-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g d c^{4} \arcsin (c x)^{2} x^{6}}{5\left(c^{2} x^{2}-1\right)}+\frac{a^{2} f x\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{4}-\frac{3 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{2} f d}{8 c\left(c^{2} x^{2}-1\right)}$
$-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g d c^{4} \arcsin (c x) x^{6}}{5\left(c^{2} x^{2}-1\right)}+\frac{6 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g d c^{2} \arcsin (c x) x^{4}}{5\left(c^{2} x^{2}-1\right)}-\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} f d c^{4} \arcsin (c x) x^{5}}{2\left(c^{2} x^{2}-1\right)}$
$+\frac{7 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} f d c^{2} \arcsin (c x) x^{3}}{4\left(c^{2} x^{2}-1\right)}-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g d c^{3} \sqrt{-c^{2} x^{2}+1} x^{5}}{25\left(c^{2} x^{2}-1\right)}+\frac{4 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g d c \sqrt{-c^{2} x^{2}+1} x^{3}}{15\left(c^{2} x^{2}-1\right)}$
$-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g d \sqrt{-c^{2} x^{2}+1} x}{5\left(c^{2} x^{2}-1\right) c}-\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} f d c^{3} \sqrt{-c^{2} x^{2}+1} x^{4}}{8\left(c^{2} x^{2}-1\right)}+\frac{5 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} f d c \sqrt{-c^{2} x^{2}+1} x^{2}}{8\left(c^{2} x^{2}-1\right)}$
$-\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g d c^{3} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{5}}{25\left(c^{2} x^{2}-1\right)}+\frac{4 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g d c \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{3}}{15\left(c^{2} x^{2}-1\right)}+\frac{3 a^{2} f d^{2} \arctan \left(\frac{\sqrt{c^{2} d} x}{\sqrt{-c^{2} d x^{2}+d}}\right)}{8 \sqrt{c^{2} d}}$

$$
-\frac{a^{2} g\left(-c^{2} d x^{2}+d\right)^{5 / 2}}{5 c^{2} d}
$$

Problem 21: Unable to integrate problem.

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{g x+f} \mathrm{~d} x
$$

Optimal(type 4, 1882 leaves, 50 steps):

$$
\begin{aligned}
& -\frac{\mathrm{I} b^{2} d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \arcsin (c x)^{2} \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}}-\frac{b c^{3} d f x^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{2 g^{2} \sqrt{-c^{2} x^{2}+1}} \\
& -\frac{d\left(c^{2} f^{2}-g^{2}\right)^{2}(a+b \arcsin (c x))^{3} \sqrt{-c^{2} d x^{2}+d}}{3 b c g^{4}(g x+f) \sqrt{-c^{2} x^{2}+1}}+\frac{\mathrm{I} b^{2} d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \arcsin (c x)^{2} \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}} \\
& -\frac{d(c f-g)(c f+g)(a+b \arcsin (c x))^{3} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}{3 b c g^{2}(g x+f)} \\
& -\frac{2 \mathrm{I} a b d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}}+\frac{2 a b c d(c f-g)(c f+g) x \sqrt{-c^{2} d x^{2}+d}}{g^{3} \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{2 b^{2} c d(c f-g)(c f+g) x \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{g^{3} \sqrt{-c^{2} x^{2}+1}}-\frac{c d(c f-g)(c f+g) x(a+b \arcsin (c x))^{3} \sqrt{-c^{2} d x^{2}+d}}{3 b g^{3} \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{2 \mathrm{I} a b d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}}+\frac{2 b^{2} d(c f-g)(c f+g) \sqrt{-c^{2} d x^{2}+d}}{g^{3}} \\
& -\frac{a^{2} d(c f-g)(c f+g) \sqrt{-c^{2} d x^{2}+d}}{g^{3}}-\frac{4 b^{2} d \sqrt{-c^{2} d x^{2}+d}}{9 g}-\frac{2 a b d(c f-g)(c f+g) \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{g^{3}} \\
& +\frac{b^{2} c d f \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{4 g^{2} \sqrt{-c^{2} x^{2}+1}}-\frac{2 b c d x(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{3 g \sqrt{-c^{2} x^{2}+1}}+\frac{2 b c^{3} d x^{3}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{9 g \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{c d f(a+b \arcsin (c x))^{3} \sqrt{-c^{2} d x^{2}+d}}{6 b g^{2} \sqrt{-c^{2} x^{2}+1}}-\frac{2 a b d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{2 b^{2} d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \arcsin (c x) \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{2 a b d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{2 b^{2} d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \arcsin (c x) \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}} \\
& -\frac{2 \mathrm{I} b^{2} d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \text { polylog }\left(3, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{2 \mathrm{I} b^{2} d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \text { polylog }\left(3, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{c f+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}}-\frac{b^{2} d(c f-g)(c f+g) \arcsin (c x)^{2} \sqrt{-c^{2} d x^{2}+d}}{g^{3}} \\
& -\frac{b^{2} c^{2} d f x \sqrt{-c^{2} d x^{2}+d}}{4 g^{2}}+\frac{c^{2} d f x(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2 g^{2}}+\frac{a^{2} d\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \arctan \left(\frac{f x c^{2}+g}{\sqrt{c^{2} f^{2}-g^{2}} \sqrt{-c^{2} x^{2}+1}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{4} \sqrt{-c^{2} x^{2}+1}} \\
& -\frac{2 b^{2} d\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{27 g}+\frac{d\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{3 g}
\end{aligned}
$$

Result(type 8, 33 leaves):

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \arcsin (c x))^{2}}{g x+f} \mathrm{~d} x
$$

Problem 22: Result more than twice size of optimal antiderivative.

$$
\int(g x+f)^{3}\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \arcsin (c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 2048 leaves, 77 steps):

$$
\frac{6 b d^{2} f^{2} g x(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{7 c \sqrt{-c^{2} x^{2}+1}}-\frac{d^{2} g^{3} x^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{63 c^{2}}+\frac{15 d^{2} f g^{2} x^{3}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{64}
$$

$$
\begin{aligned}
& +\frac{5 d^{2} f^{3} x\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{24}+\frac{5 d^{2} g^{3} x^{4}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{63} \\
& +\frac{d^{2} f^{3} x\left(-c^{2} x^{2}+1\right)^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{6}+\frac{d^{2} g^{3} x^{4}\left(-c^{2} x^{2}+1\right)^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{9}+\frac{96 b^{2} d^{2} f^{2} g \sqrt{-c^{2} d x^{2}+d}}{245 c^{2}} \\
& -\frac{1079 b^{2} d^{2} f g^{2} x^{3} \sqrt{-c^{2} d x^{2}+d}}{18432}+\frac{80 b^{2} d^{2} g^{3}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{11907 c^{4}}-\frac{65 b^{2} d^{2} f^{3} x\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{1728} \\
& +\frac{4 b^{2} d^{2} g^{3}\left(-c^{2} x^{2}+1\right)^{2} \sqrt{-c^{2} d x^{2}+d}}{1323 c^{4}}-\frac{b^{2} d^{2} f^{3} x\left(-c^{2} x^{2}+1\right)^{2} \sqrt{-c^{2} d x^{2}+d}}{108}+\frac{50 b^{2} d^{2} g^{3}\left(-c^{2} x^{2}+1\right)^{3} \sqrt{-c^{2} d x^{2}+d}}{27783 c^{4}} \\
& -\frac{2 b^{2} d^{2} g^{3}\left(-c^{2} x^{2}+1\right)^{4} \sqrt{-c^{2} d x^{2}+d}}{729 c^{4}}+\frac{4 a b d^{2} g^{3} x \sqrt{-c^{2} d x^{2}+d}}{63 c^{3} \sqrt{-c^{2} x^{2}+1}}+\frac{359 b^{2} d^{2} f g^{2} \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{12288 c^{3} \sqrt{-c^{2} x^{2}+1}}+\frac{4 b^{2} d^{2} g^{3} x \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{63 c^{3} \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

$$
\begin{aligned}
& 16 \sqrt{-c^{2} x^{2}+1} \\
& 189 c \sqrt{-c^{2} x^{2}+1} \\
& 21 \sqrt{-c^{2} x^{2}+1} \\
& +\frac{38 b c^{3} d^{2} g^{3} x^{7}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{441 \sqrt{-c^{2} x^{2}+1}}-\frac{2 b c^{5} d^{2} g^{3} x^{9}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{81 \sqrt{-c^{2} x^{2}+1}}+\frac{5 d^{2} f g^{2}(a+b \arcsin (c x))^{3} \sqrt{-c^{2} d x^{2}+d}}{128 b c^{3} \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{15 b d^{2} f g^{2} x^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{128 c \sqrt{-c^{2} x^{2}+1}}-\frac{6 b c d^{2} f^{2} g x^{3}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{7 \sqrt{-c^{2} x^{2}+1}}-\frac{59 b c d^{2} f g^{2} x^{4}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{128 \sqrt{-c^{2} x^{2}+1}} \\
& +\frac{18 b c^{3} d^{2} f^{2} g x^{5}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{35 \sqrt{-c^{2} x^{2}+1}}+\frac{17 b c^{3} d^{2} f g^{2} x^{6}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{48 \sqrt{-c^{2} x^{2}+1}} \\
& -\frac{6 b c^{5} d^{2} f^{2} g x^{7}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{49 \sqrt{-c^{2} x^{2}+1}}-\frac{3 b c^{5} d^{2} f g^{2} x^{8}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{32 \sqrt{-c^{2} x^{2}+1}}-\frac{359 b^{2} d^{2} f g^{2} x \sqrt{-c^{2} d x^{2}+d}}{12288 c^{2}} \\
& +\frac{209 b^{2} c^{2} d^{2} f g^{2} x^{5} \sqrt{-c^{2} d x^{2}+d}}{4608}-\frac{3 b^{2} c^{4} d^{2} f g^{2} x^{7} \sqrt{-c^{2} d x^{2}+d}}{256}+\frac{16 b^{2} d^{2} f^{2} g\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{245 c^{2}} \\
& +\frac{36 b^{2} d^{2} f^{2} g\left(-c^{2} x^{2}+1\right)^{2} \sqrt{-c^{2} d x^{2}+d}}{1225 c^{2}}+\frac{6 b^{2} d^{2} f^{2} g\left(-c^{2} x^{2}+1\right)^{3} \sqrt{-c^{2} d x^{2}+d}}{343 c^{2}}+\frac{5 b d^{2} f^{3}\left(-c^{2} x^{2}+1\right)^{3 / 2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{48 c} \\
& +\frac{b d^{2} f^{3}\left(-c^{2} x^{2}+1\right)^{5 / 2}(a+b \arcsin (c x)) \sqrt{-c^{2} d x^{2}+d}}{18 c}-\frac{15 d^{2} f g^{2} x(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{128 c^{2}} \\
& +\frac{5 d^{2} f g^{2} x^{3}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{16}+\frac{3 d^{2} f g^{2} x^{3}\left(-c^{2} x^{2}+1\right)^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{8} \\
& -\frac{3 d^{2} f^{2} g\left(-c^{2} x^{2}+1\right)^{3}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{7 c^{2}}+\frac{115 b^{2} d^{2} f^{3} \arcsin (c x) \sqrt{-c^{2} d x^{2}+d}}{1152 c \sqrt{-c^{2} x^{2}+1}}+\frac{5 d^{2} f^{3}(a+b \arcsin (c x))^{3} \sqrt{-c^{2} d x^{2}+d}}{48 b c \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

```
\(+\frac{160 b^{2} d^{2} g^{3} \sqrt{-c^{2} d x^{2}+d}}{3969 c^{4}}-\frac{245 b^{2} d^{2} f^{3} x \sqrt{-c^{2} d x^{2}+d}}{1152}-\frac{2 d^{2} g^{3}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{63 c^{4}}+\frac{5 d^{2} f^{3} x(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{16}\)
\(+\frac{d^{2} g^{3} x^{4}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{21}\)
```

Result(type ?, 5225 leaves): Display of huge result suppressed!
Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \frac{(g x+f)^{3}(a+b \arcsin (c x))^{2}}{\sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 3, 624 leaves, 17 steps):

$$
\begin{array}{r}
\frac{6 b^{2} f^{2} g\left(-c^{2} x^{2}+1\right)}{c^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{14 b^{2} g^{3}\left(-c^{2} x^{2}+1\right)}{9 c^{4} \sqrt{-c^{2} d x^{2}+d}}+\frac{3 b^{2} f g^{2} x\left(-c^{2} x^{2}+1\right)}{4 c^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{2 b^{2} g^{3}\left(-c^{2} x^{2}+1\right)^{2}}{27 c^{4} \sqrt{-c^{2} d x^{2}+d}}-\frac{3 f^{2} g\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{c^{2} \sqrt{-c^{2} d x^{2}+d}} \\
-\frac{2 g^{3}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{3 c^{4} \sqrt{-c^{2} d x^{2}+d}}-\frac{3 f g^{2} x\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{2 c^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{g^{3} x^{2}\left(-c^{2} x^{2}+1\right)(a+b \arcsin (c x))^{2}}{3 c^{2} \sqrt{-c^{2} d x^{2}+d}}
\end{array}
$$

$$
\begin{aligned}
& -\frac{3 b^{2} f g^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{4 c^{3} \sqrt{-c^{2} d x^{2}+d}}+\frac{6 b f^{2} g x(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{c \sqrt{-c^{2} d x^{2}+d}}+\frac{4 b g^{3} x(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{3 c^{3} \sqrt{-c^{2} d x^{2}+d}} \\
& +\frac{3 b f g^{2} x^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{2 c \sqrt{-c^{2} d x^{2}+d}}+\frac{2 b g^{3} x^{3}(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{9 c \sqrt{-c^{2} d x^{2}+d}}+\frac{f^{3}(a+b \arcsin (c x))^{3} \sqrt{-c^{2} x^{2}+1}}{3 b c \sqrt{-c^{2} d x^{2}+d}}
\end{aligned}
$$

$$
+\frac{f g^{2}(a+b \arcsin (c x))^{3} \sqrt{-c^{2} x^{2}+1}}{2 b c^{3} \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 3, 1875 leaves):
$-\frac{3 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f g^{2} \arcsin (c x)^{2} x^{3}}{2 d\left(c^{2} x^{2}-1\right)}-\frac{3 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g \arcsin (c x)^{2} x^{2} f^{2}}{d\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{3} f^{3}}{3 c d\left(c^{2} x^{2}-1\right)}$

$$
-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \arcsin (c x)^{2} x^{2}}{3 c^{2} d\left(c^{2} x^{2}-1\right)}-\frac{3 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f g^{2} x}{4 c^{2} d\left(c^{2} x^{2}-1\right)}+\frac{3 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g \arcsin (c x)^{2} f^{2}}{c^{2} d\left(c^{2} x^{2}-1\right)}-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \arcsin (c x) x^{4}}{3 d\left(c^{2} x^{2}-1\right)}
$$

$$
+\frac{a^{2} f^{3} \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{\sqrt{c^{2} d}}
$$

$$
+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} x^{4}}{27 d\left(c^{2} x^{2}-1\right)}-\frac{40 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3}}{27 c^{4} d\left(c^{2} x^{2}-1\right)}-\frac{a^{2} g^{3} x^{2} \sqrt{-c^{2} d x^{2}+d}}{3 c^{2} d}-\frac{3 a^{2} f^{2} g \sqrt{-c^{2} d x^{2}+d}}{c^{2} d}
$$

$$
+\frac{3 a^{2} f g^{2} \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{2 c^{2} \sqrt{c^{2} d}}-\frac{3 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} f g^{2} \arcsin (c x) x^{3}}{d\left(c^{2} x^{2}-1\right)}+\frac{3 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} f g^{2} \sqrt{-c^{2} x^{2}+1}}{4 c^{3} d\left(c^{2} x^{2}-1\right)}
$$

$$
\begin{aligned}
& -\frac{6 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g \arcsin (c x) x^{2} f^{2}}{d\left(c^{2} x^{2}-1\right)}-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \sqrt{-c^{2} x^{2}+1} x^{3}}{9 c d\left(c^{2} x^{2}-1\right)}-\frac{4 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \sqrt{-c^{2} x^{2}+1} x}{3 c^{3} d\left(c^{2} x^{2}-1\right)} \\
& +\frac{6 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g \arcsin (c x) f^{2}}{c^{2} d\left(c^{2} x^{2}-1\right)}-\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{2} f^{3}}{c d\left(c^{2} x^{2}-1\right)}-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \arcsin (c x) x^{2}}{3 c^{2} d\left(c^{2} x^{2}-1\right)} \\
& -\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{3}}{9 c d\left(c^{2} x^{2}-1\right)}-\frac{4 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x}{3 c^{3} d\left(c^{2} x^{2}-1\right)} \\
& +\frac{3 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f g^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{4 c^{3} d\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{3} f g^{2}}{2 c^{3} d\left(c^{2} x^{2}-1\right)}+\frac{3 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f g^{2} \arcsin (c x)^{2} x}{2 c^{2} d\left(c^{2} x^{2}-1\right)} \\
& -\frac{6 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g f^{2}}{c^{2} d\left(c^{2} x^{2}-1\right)}+\frac{38 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} x^{2}}{27 c^{2} d\left(c^{2} x^{2}-1\right)}+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \arcsin (c x)^{2}}{3 c^{4} d\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \arcsin (c x)^{2} x^{4}}{3 d\left(c^{2} x^{2}-1\right)} \\
& +\frac{3 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f g^{2} x^{3}}{4 d\left(c^{2} x^{2}-1\right)}+\frac{6 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g x^{2} f^{2}}{d\left(c^{2} x^{2}-1\right)}-\frac{3 a^{2} f g^{2} x \sqrt{-c^{2} d x^{2}+d}}{2 c^{2} d}-\frac{3 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{-c^{2} x^{2}+1} \arcsin (c x)^{2} f g^{2}}{2 c^{3} d\left(c^{2} x^{2}-1\right)} \\
& -\frac{3 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} f g^{2} \sqrt{-c^{2} x^{2}+1} x^{2}}{2 c d\left(c^{2} x^{2}-1\right)}-\frac{6 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g \sqrt{-c^{2} x^{2}+1} x f^{2}}{c d\left(c^{2} x^{2}-1\right)}-\frac{3 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} f g^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{2}}{2 c d\left(c^{2} x^{2}-1\right)} \\
& -\frac{6 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} g \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x f^{2}}{c d\left(c^{2} x^{2}-1\right)}+\frac{3 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} f g^{2} \arcsin (c x) x}{c^{2} d\left(c^{2} x^{2}-1\right)}+\frac{4 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \arcsin (c x)}{3 c^{4} d\left(c^{2} x^{2}-1\right)} \\
& -\frac{2 a^{2} g^{3} \sqrt{-c^{2} d x^{2}+d}}{3 d c^{4}}
\end{aligned}
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int \frac{(g x+f)^{2}(a+b \arcsin (c x))^{2}}{\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 974 leaves, 30 steps):

$$
\begin{aligned}
& \frac{2 b^{2} f g}{3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{b^{2} f^{2} x}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{b^{2} g^{2} x}{3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{2 f^{2} x(a+b \arcsin (c x))^{2}}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{2 f g(a+b \arcsin (c x))^{2}}{3 c^{2} d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}} \\
& +\frac{f^{2} x(a+b \arcsin (c x))^{2}}{3 d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}+\frac{g^{2} x^{3}(a+b \arcsin (c x))^{2}}{3 d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}-\frac{b f^{2}(a+b \arcsin (c x))}{3 c d^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}-\frac{2 b f g x(a+b \arcsin (c x))}{3 c d^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}} \\
& -\frac{b g^{2} x^{2}(a+b \arcsin (c x))}{3 c d^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}-\frac{b^{2} g^{2} \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{3 c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{4 \mathrm{I} b f g(a+b \arcsin (c x)) \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{3 d^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}} \\
& +\frac{\mathrm{I} b^{2} g^{2} \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{3 c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{2 \mathrm{I} b^{2} f g \operatorname{polylog}\left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right) \sqrt{-c^{2} x^{2}+1}}{3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}
\end{aligned}
$$

$+\frac{4 b f^{2}(a+b \arcsin (c x)) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{3 c \sqrt{-c^{2} x^{2}+a}}-\frac{2 b g^{2}(a+b \arcsin (c x)) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{\sqrt{-c^{2} x^{2}+d}}$

$$
3 c d^{2} \sqrt{-c^{2} d x^{2}+d} \quad 3 c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}
$$

$+\frac{\mathrm{I} g^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{3 c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{2 \mathrm{I} b^{2} f^{2} \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{3 c d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{2 \mathrm{I} f^{2}(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{3 c d^{2} \sqrt{-c^{2} d x^{2}+d}}$

$$
-\frac{2 I b^{2} f g \text { polylog }\left(2,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right) \sqrt{-c^{2} x^{2}+1}}{3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type ?, 9709 leaves): Display of huge result suppressed!
Problem 25: Result more than twice size of optimal antiderivative.

$$
\int \frac{(g x+f)(a+b \arcsin (c x))^{2}}{\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 610 leaves, 21 steps):

$$
\begin{aligned}
& \frac{b^{2} g}{3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{b^{2} f x}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{2 f x(a+b \arcsin (c x))^{2}}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{g(a+b \arcsin (c x))^{2}}{3 c^{2} d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}+\frac{f x(a+b \arcsin (c x))^{2}}{3 d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}} \\
& -\frac{b f(a+b \arcsin (c x))}{3 c d^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}-\frac{b g x(a+b \arcsin (c x))}{3 c d^{2} \sqrt{-c^{2} x^{2}+1} \sqrt{-c^{2} d x^{2}+d}}-\frac{2 \mathrm{I} f(a+b \arcsin (c x))^{2} \sqrt{-c^{2} x^{2}+1}}{3 c d^{2} \sqrt{-c^{2} d x^{2}+d}} \\
& +\frac{2 \mathrm{I} b g(a+b \arcsin (c x)) \arctan \left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) \sqrt{-c^{2} x^{2}+1}}{3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{4 b f(a+b \arcsin (c x)) \ln \left(1+\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)^{2}\right) \sqrt{-c^{2} x^{2}+1}}{3 c d^{2} \sqrt{-c^{2} d x^{2}+d}} \\
& -\frac{\mathrm{I} b^{2} g \operatorname{polylog}\left(2,-\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right) \sqrt{-c^{2} x^{2}+1}}{3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{\mathrm{I} b^{2} g \operatorname{polylog}\left(2, \mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)\right) \sqrt{-c^{2} x^{2}+1}}{3 c^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}} \\
& \left.-\frac{2 \mathrm{I} b^{2} f \operatorname{polylog}\left(2,-\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right.\right.}{2}\right) \sqrt{-c^{2} x^{2}+1}
\end{aligned}
$$

Result(type ?, 5896 leaves): Display of huge result suppressed!
Problem 26: Result more than twice size of optimal antiderivative.

$$
\int \frac{(g x+f)(a+b \arcsin (c x))}{e x+d} \mathrm{~d} x
$$

Optimal(type 4, 357 leaves, 14 steps):
$-\frac{\mathrm{I} b(-d g+e f) \arcsin (c x)^{2}}{2 e^{2}}+\frac{g x(a+b \arcsin (c x))}{e}-\frac{b(-d g+e f) \arcsin (c x) \ln (e x+d)}{e^{2}}+\frac{(-d g+e f)(a+b \arcsin (c x)) \ln (e x+d)}{e^{2}}$

$$
\begin{aligned}
& \left.\frac{b(-d g+e f) \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2}}+\frac{b(-d g+e f) \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2}}\right) \\
- & \frac{\mathrm{I} b(-d g+e f) \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2}}-\frac{\mathrm{I} b(-d g+e f) \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2}}+\frac{b g \sqrt{-c^{2} x^{2}+1}}{c e}
\end{aligned}
$$

Result(type 4, 1577 leaves):

$$
\begin{aligned}
& \frac{a g x}{e}-\frac{a \ln (c e x+c d) d g}{e^{2}}+\frac{a \ln (c e x+c d) f}{e}-\frac{\mathrm{I} c^{2} b f \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2}}{e\left(d^{2} c^{2}-e^{2}\right)}+\frac{b g \sqrt{-c^{2} x^{2}+1}}{c e} \\
& +\frac{\mathrm{I} b \arcsin (c x)^{2} d g}{2 e^{2}}+\frac{\mathrm{I} b e f \mathrm{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}}+\frac{b \arcsin (c x) g x}{e} \\
& -\frac{\mathrm{I} c^{2} b f \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2}}{e\left(d^{2} c^{2}-e^{2}\right)}-\frac{b e f \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}} \\
& +\frac{b d g \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}}+\frac{b d g \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}} \\
& \left.-\frac{b e f \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}}+\frac{\mathrm{I} b e f \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}}\right) \\
& -\frac{\mathrm{I} b d g \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}}-\frac{\mathrm{I} b \arcsin (c x)^{2} f}{2 e}-\frac{\mathrm{I} b d g \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right.}{d^{2} c^{2}-e^{2}} \\
& +\frac{\mathrm{I} c^{2} b d^{3} g \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{e^{2}\left(d^{2} c^{2}-e^{2}\right)}+\frac{\mathrm{I} c^{2} b d^{3} g \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{e^{2}\left(d^{2} c^{2}-e^{2}\right)} \\
& -\frac{c^{2} b d^{3} g \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{e^{2}\left(d^{2} c^{2}-e^{2}\right)}+\frac{c^{2} b f \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2}}{e\left(d^{2} c^{2}-e^{2}\right)}
\end{aligned}
$$

$$
-\frac{c^{2} b d^{3} g \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{e^{2}\left(d^{2} c^{2}-e^{2}\right)}+\frac{c^{2} b f \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2}}{e\left(d^{2} c^{2}-e^{2}\right)}
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \frac{(g x+f)(a+b \arcsin (c x))}{(e x+d)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 367 leaves, 15 steps):

$$
\begin{aligned}
& -\frac{\mathrm{I} b g \arcsin (c x)^{2}}{2 e^{2}}-\frac{(-d g+e f)(a+b \arcsin (c x))}{e^{2}(e x+d)}-\frac{b g \arcsin (c x) \ln (e x+d)}{e^{2}}+\frac{g(a+b \arcsin (c x)) \ln (e x+d)}{e^{2}} \\
& \left.+\frac{b g \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right.}{}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right) \\
& \left.+\frac{e^{2}}{}+\frac{b g \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2}}\right) \\
& \quad-\frac{\mathrm{I} b g \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2}}-\frac{\mathrm{I} b g \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2}}+\frac{b c(-d g+e f) \arctan \left(\frac{c^{2} d x+e}{\sqrt{d^{2} c^{2}-e^{2}} \sqrt{-c^{2} x^{2}+1}}\right)}{e^{2} \sqrt{d^{2} c^{2}-e^{2}}}
\end{aligned}
$$

Result(type 4, 981 leaves):

$$
\begin{aligned}
& \frac{c a d g}{e^{2}(c e x+c d)}-\frac{c a f}{e(c e x+c d)}+\frac{a g \ln (c e x+c d)}{e^{2}}-\frac{\operatorname{I} c^{2} b g \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2}}{e^{2}\left(d^{2} c^{2}-e^{2}\right)}+\frac{c b \arcsin (c x) d g}{e^{2}(c e x+c d)} \\
& -\frac{c b \arcsin (c x) f}{e(c e x+c d)}+\frac{\mathrm{I} b g \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}}+\frac{\mathrm{I} b g \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right.}{d^{2} c^{2}-e^{2}} \\
& -\frac{\mathrm{I} c^{2} b g \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2}}{e^{2}\left(d^{2} c^{2}-e^{2}\right)}+\frac{c^{2} b g \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2}}{e^{2}\left(d^{2} c^{2}-e^{2}\right)} \\
& +\frac{c^{2} b g \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2}}{e^{2}\left(d^{2} c^{2}-e^{2}\right)}+\frac{2 c b f \arctan \left(\frac{2 \mathrm{I} c d+2 e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{2 \sqrt{d^{2} c^{2}-e^{2}}}\right)}{e \sqrt{d^{2} c^{2}-e^{2}}}
\end{aligned}
$$

$-\frac{b \arcsin (c x) g \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}}$

Problem 28: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(h x^{2}+g x+f\right)(a+b \arcsin (c x))}{e x+d} \mathrm{~d} x
$$

Optimal(type 4, 464 leaves, 15 steps):

$$
+\frac{b(e h x-4 d h+4 e g) \sqrt{-c^{2} x^{2}+1}}{4 c e^{2}}
$$

Result(type ?, 2476 leaves): Display of huge result suppressed!
Problem 29: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(h x^{2}+g x+f\right)(a+b \arcsin (c x))}{(e x+d)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 467 leaves, 16 steps):
$-\frac{\mathrm{I} b(-2 d h+e g) \arcsin (c x)^{2}}{2 e^{3}}+\frac{h x(a+b \arcsin (c x))}{e^{2}}-\frac{\left(d^{2} h-d e g+e^{2} f\right)(a+b \arcsin (c x))}{e^{3}(e x+d)}-\frac{b(-2 d h+e g) \arcsin (c x) \ln (e x+d)}{e^{3}}$

$$
\begin{aligned}
& \left.+\frac{(-2 d h+e g)(a+b \arcsin (c x)) \ln (e x+d)}{e^{3}}+\frac{b(-2 d h+e g) \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{3}}\right) \\
& +\frac{b(-2 d h+e g) \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{3}}-\frac{\mathrm{I} b(-2 d h+e g) \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{3}} \\
& \left.-\frac{\mathrm{I} b(-2 d h+e g) \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{3}}+\frac{b c\left(d^{2} h-d e g+e^{2} f\right) \arctan \left(\frac{c^{2} d x+e}{\sqrt{d^{2} c^{2}-e^{2}} \sqrt{-c^{2} x^{2}+1}}\right)}{e^{3} \sqrt{d^{2} c^{2}-e^{2}}}\right)
\end{aligned}
$$

Result(type 4, 1921 leaves):

$$
\begin{aligned}
& \frac{\mathrm{I} b \arcsin (c x)^{2} d h}{e^{3}}+\frac{2 c b d^{2} h \arctan \left(\frac{2 \mathrm{I} c d+2 e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{2 \sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{3} \sqrt{d^{2} c^{2}-e^{2}}}-\frac{c b \arcsin (c x) d^{2} h}{e^{3}(c e x+c d)} \\
& +\frac{2 b d h \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{e\left(d^{2} c^{2}-e^{2}\right)}+\frac{2 b d h \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{e\left(d^{2} c^{2}-e^{2}\right)} \\
& -\frac{2 \mathrm{I} b d h \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{e\left(d^{2} c^{2}-e^{2}\right)}-\frac{2 \mathrm{I} b d h \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{e\left(d^{2} c^{2}-e^{2}\right)} \\
& -\frac{\mathrm{I} b g \arcsin (c x)^{2}}{2 e^{2}}-\frac{\mathrm{I} c^{2} b g \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2}}{e^{2}\left(d^{2} c^{2}-e^{2}\right)} \\
& +\frac{c^{2} b g \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2}}{e^{2}\left(d^{2} c^{2}-e^{2}\right)}+\frac{c^{2} b g \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2}}{e^{2}\left(d^{2} c^{2}-e^{2}\right)} \\
& +\frac{c b \arcsin (c x) d g}{e^{2}(c e x+c d)}-\frac{2 c b d g \arctan \left(\frac{2 \mathrm{I} c d+2 e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{2 \sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2} \sqrt{d^{2} c^{2}-e^{2}}}+\frac{a g \ln (c e x+c d)}{e^{2}}-\frac{c a f}{e(c e x+c d)}
\end{aligned}
$$

$+\frac{\mathrm{I} b g \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}}+\frac{\mathrm{I} b g \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}}$
$-\frac{b \arcsin (c x) g \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}}-\frac{b \arcsin (c x) g \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{d^{2} c^{2}-e^{2}}$
$+\frac{c a d g}{e^{2}(c e x+c d)}-\frac{c b \arcsin (c x) f}{e(c e x+c d)}+\frac{2 c b f \arctan \left(\frac{2 \mathrm{I} c d+2 e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{2 \sqrt{d^{2} c^{2}-e^{2}}}\right)}{e \sqrt{d^{2} c^{2}-e^{2}}}$
$-\frac{2 c^{2} b d^{3} h \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{e^{3}\left(d^{2} c^{2}-e^{2}\right)}$
$-\frac{2 c^{2} b d^{3} h \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{e^{3}\left(d^{2} c^{2}-e^{2}\right)}+\frac{2 \mathrm{I} c^{2} b d^{3} h \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{e^{3}\left(d^{2} c^{2}-e^{2}\right)}$
$+\frac{2 \mathrm{I} c^{2} b d^{3} h \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right)}{e^{3}\left(d^{2} c^{2}-e^{2}\right)}+\frac{b h \sqrt{-c^{2} x^{2}+1}}{c e^{2}}-\frac{c a d^{2} h}{e^{3}(c e x+c d)}-\frac{2 a \ln (c e x+c d) d h}{e^{3}}$
$+\frac{b \arcsin (c x) h x}{e^{2}}-\frac{\mathrm{I} c^{2} b g \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2}}{e^{2}\left(d^{2} c^{2}-e^{2}\right)}+\frac{a h x}{e^{2}}$

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(h x^{2}+g x+f\right)(a+b \arcsin (c x))}{(e x+d)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 489 leaves, 16 steps):

$$
\begin{aligned}
& -\frac{\mathrm{I} b h \arcsin (c x)^{2}}{2 e^{3}}-\frac{\left(d^{2} h-d e g+e^{2} f\right)(a+b \arcsin (c x))}{2 e^{3}(e x+d)^{2}}-\frac{(-2 d h+e g)(a+b \arcsin (c x))}{e^{3}(e x+d)} \\
& -\frac{b c\left(2 e^{2}(-2 d h+e g)-c^{2} d\left(-3 d^{2} h+d e g+e^{2} f\right)\right) \arctan \left(\frac{c^{2} d x+e}{\sqrt{d^{2} c^{2}-e^{2}} \sqrt{-c^{2} x^{2}+1}}\right)}{2 e^{3}\left(d^{2} c^{2}-e^{2}\right)^{3 / 2}}-\frac{b h \arcsin (c x) \ln (e x+d)}{e^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{h(a+b \arcsin (c x)) \ln (e x+d)}{e^{3}}+\frac{b h \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{3}}+\frac{b h \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{3}}\right) \\
& \left.-\frac{\mathrm{I} b h \text { polylog }\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right.}{}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right) \\
& e^{3}
\end{aligned}-\frac{\mathrm{I} b h \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{3}}+\frac{b c\left(d^{2} h-d e g+e^{2} f\right) \sqrt{-c^{2} x^{2}+1}}{2 e^{2}\left(d^{2} c^{2}-e^{2}\right)(e x+d)} .
$$

Result(type ?, 2705 leaves): Display of huge result suppressed!
Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{(g x+f)(a+b \arcsin (c x))^{2}}{(e x+d)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 941 leaves, 33 steps):

$$
\begin{aligned}
& \frac{a b g^{2} \arcsin (c x)}{e^{2}(-d g+e f)}+\frac{b^{2} g^{2} \arcsin (c x)^{2}}{2 e^{2}(-d g+e f)}-\frac{(g x+f)^{2}(a+b \arcsin (c x))^{2}}{2(-d g+e f)(e x+d)^{2}}-\frac{a b c\left(2 e^{2} g-c^{2} d(d g+e f)\right) \arctan \left(\frac{c^{2} d x+e}{\sqrt{d^{2} c^{2}-e^{2}} \sqrt{-c^{2} x^{2}+1}}\right)}{e^{2}\left(d^{2} c^{2}-e^{2}\right)^{3 / 2}} \\
& -\frac{b^{2} c^{2}(-d g+e f) \ln (e x+d)}{e^{2}\left(d^{2} c^{2}-e^{2}\right)}-\frac{\mathrm{I} b^{2} c^{3} d(-d g+e f) \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2}\left(d^{2} c^{2}-e^{2}\right)^{3 / 2}} \\
& +\frac{\mathrm{I} b^{2} c^{3} d(-d g+e f) \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2}\left(d^{2} c^{2}-e^{2}\right)^{3 / 2}}-\frac{b^{2} c^{3} d(-d g+e f) \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2}\left(d^{2} c^{2}-e^{2}\right)^{3 / 2}} \\
& +\frac{b^{2} c^{3} d(-d g+e f) \operatorname{poly} \log \left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2}\left(d^{2} c^{2}-e^{2}\right)^{3 / 2}}-\frac{2 \mathrm{I} b^{2} c g \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2} \sqrt{d^{2} c^{2}-e^{2}}} \\
& +\frac{2 \mathrm{I} b^{2} c g \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2} \sqrt{d^{2} c^{2}-e^{2}}}-\frac{2 b^{2} c g \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2} \sqrt{d^{2} c^{2}-e^{2}}} \\
& +\frac{2 b^{2} c g \text { polylog }\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2} \sqrt{d^{2} c^{2}-e^{2}}}+\frac{a b c(-d g+e f) \sqrt{-c^{2} x^{2}+1}}{e\left(d^{2} c^{2}-e^{2}\right)(e x+d)}+\frac{b^{2} c(-d g+e f) \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{e\left(d^{2} c^{2}-e^{2}\right)(e x+d)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Problem 32: Result more than twice size of optimal antiderivative. } \\
& \int(h x+g)\left(x^{2} f+e x+d\right)(a+b \arcsin (c x))^{2} \mathrm{~d} x \\
& \text { Optimal(type 3, } 383 \text { leaves, } 20 \text { steps): } \\
& -2 b^{2} d g x-\frac{4 b^{2}(e h+f g) x}{9 c^{2}}-\frac{3 b^{2} f h x^{2}}{32 c^{2}}-\frac{b^{2}(d h+e g) x^{2}}{4}-\frac{2 b^{2}(e h+f g) x^{3}}{27}-\frac{b^{2} f h x^{4}}{32}-\frac{3 f h(a+b \arcsin (c x))^{2}}{32 c^{4}} \\
& -\frac{(d h+e g)(a+b \arcsin (c x))^{2}}{4 c^{2}}+d g x(a+b \arcsin (c x))^{2}+\frac{(d h+e g) x^{2}(a+b \arcsin (c x))^{2}}{2}+\frac{(e h+f g) x^{3}(a+b \arcsin (c x))^{2}}{3} \\
& +\frac{f h x^{4}(a+b \arcsin (c x))^{2}}{4}+\frac{2 b d g(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{c}+\frac{4 b(e h+f g)(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{9 c^{3}} \\
& +\frac{3 b f h x(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{16 c^{3}}+\frac{b(d h+e g) x(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{2 c}+\frac{2 b(e h+f g) x^{2}(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{9 c} \\
& +\frac{b f h x^{3}(a+b \arcsin (c x)) \sqrt{-c^{2} x^{2}+1}}{8 c} \\
& \text { Result(type 3, } 869 \text { leaves): } \\
& \frac{1}{c}\left(\frac{a^{2}\left(\frac{h f c^{4} x^{4}}{4}+\frac{(h c e+c f g) c^{3} x^{3}}{3}+\frac{\left(h c^{2} d+c^{2} e g\right) c^{2} x^{2}}{2}+c^{4} g d x\right)}{c^{3}}\right. \\
& +\frac{1}{c^{3}}\left(b ^ { 2 } \left(\frac { 1 } { 3 2 } \left(h f \left(8 \arcsin (c x)^{2} x^{4} c^{4}+4 \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x^{3} c^{3}-16 \arcsin (c x)^{2} x^{2} c^{2}-c^{4} x^{4}-10 \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x c\right.\right.\right.\right. \\
& \left.\left.+5 \arcsin (c x)^{2}+5 c^{2} x^{2}-4\right)\right)+\frac{h c^{2} d\left(2 \arcsin (c x)^{2} x^{2} c^{2}+2 \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x c-\arcsin (c x)^{2}-c^{2} x^{2}\right)}{4} \\
& +\frac{c^{2} e g\left(2 \arcsin (c x)^{2} x^{2} c^{2}+2 \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x c-\arcsin (c x)^{2}-c^{2} x^{2}\right)}{4} \\
& +\frac{h c e\left(9 \arcsin (c x)^{2} c^{3} x^{3}+6 \sqrt{-c^{2} x^{2}+1} \arcsin (c x) c^{2} x^{2}-27 c x \arcsin (c x)^{2}-2 c^{3} x^{3}-42 \arcsin (c x) \sqrt{-c^{2} x^{2}+1}+42 c x\right)}{27}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{c f g\left(9 \arcsin (c x)^{2} c^{3} x^{3}+6 \sqrt{-c^{2} x^{2}+1} \arcsin (c x) c^{2} x^{2}-27 c x \arcsin (c x)^{2}-2 c^{3} x^{3}-42 \arcsin (c x) \sqrt{-c^{2} x^{2}+1}+42 c x\right)}{27}+c^{3} g d\left(c x \arcsin (c x)^{2}\right. \\
& \left.-2 c x+2 \arcsin (c x) \sqrt{-c^{2} x^{2}+1}\right)+\frac{h f\left(2 \arcsin (c x)^{2} x^{2} c^{2}+2 \arcsin (c x) \sqrt{-c^{2} x^{2}+1} x c-\arcsin (c x)^{2}-c^{2} x^{2}\right)}{4}+h c e\left(c x \arcsin (c x)^{2}-2 c x\right. \\
& \left.\left.\left.+2 \arcsin (c x) \sqrt{-c^{2} x^{2}+1}\right)+c f g\left(c x \arcsin (c x)^{2}-2 c x+2 \arcsin (c x) \sqrt{-c^{2} x^{2}+1}\right)\right)\right)+\frac{1}{c^{3}}\left(2 a b \left(\frac{\arcsin (c x) h f c^{4} x^{4}}{4}\right.\right. \\
& +\frac{\arcsin (c x) c^{4} x^{3} e h}{3}+\frac{\arcsin (c x) x^{3} c^{4} f g}{3}+\frac{\arcsin (c x) c^{4} x^{2} d h}{2}+\frac{\arcsin (c x) c^{4} x^{2} e g}{2}+\arcsin (c x) c^{4} g d x \\
& \left.-\frac{\left(6 h c^{2} d+6 c^{2} e g\right)\left(-\frac{c x \sqrt{-c^{2} x^{2}+1}}{2}+\frac{\arcsin (c x)}{2}\right)}{12}-\frac{(4 h c e+4 c f g)\left(-\frac{c^{2} x^{2} \sqrt{-c^{2} x^{2}+1}}{3}-\frac{2 \sqrt{-c^{2} x^{2}+1}}{3}\right)}{3}\right) 12 \\
& -\frac{12}{4 f\left(-\frac{\sqrt{-c^{2} x^{2}+1} x^{3} c^{3}}{4}-\frac{3 c x \sqrt{-c^{2} x^{2}+1}}{8}+\frac{3 \arcsin (c x)}{8}\right)} \\
& \left.-\frac{1}{4}\right) \\
& \left.\left.\left.+c^{3} g d \sqrt{-c^{2} x^{2}+1}\right)\right)\right)
\end{aligned}
$$

Problem 33: Unable to integrate problem.

$$
\int \frac{\left(f x^{2}+e x+d\right)(a+b \arcsin (c x))^{2}}{h x+g} \mathrm{~d} x
$$

Optimal(type 4, 1087 leaves, 38 steps):
$\frac{b^{2} f x \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{2 c h}+\frac{2 a b\left(d h^{2}-e g h+f g^{2}\right) \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g-\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}$
$+\frac{2 a b\left(d h^{2}-e g h+f g^{2}\right) \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g+\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}-\frac{a b(-f h x-4 e h+4 f g) \sqrt{-c^{2} x^{2}+1}}{2 c h^{2}}$
$-\frac{2 b^{2}(-e h+f g) \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{c h^{2}}-\frac{2 \operatorname{I} a b\left(d h^{2}-e g h+f g^{2}\right) \operatorname{poly} \log \left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g-\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}$

$$
\begin{aligned}
& -\frac{2 \mathrm{I} b^{2}\left(d h^{2}-e g h+f g^{2}\right) \arcsin (c x) \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g-\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}-\frac{2 \mathrm{I} a b\left(d h^{2}-e g h+f g^{2}\right) \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g+\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}} \\
& -\frac{2 \mathrm{I} b^{2}\left(d h^{2}-e g h+f g^{2}\right) \arcsin (c x) \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g+\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}+\frac{2 b^{2}(-e h+f g) x}{h^{2}}+\frac{a^{2} f x^{2}}{2 h}-\frac{b^{2} f x^{2}}{4 h} \\
& +\frac{2 b^{2}\left(d h^{2}-e g h+f g^{2}\right) \text { polylog }\left(3, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g-\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}+\frac{2 b^{2}\left(d h^{2}-e g h+f g^{2}\right) \operatorname{polylog}\left(3, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g+\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}} \\
& +\frac{a^{2}\left(d h^{2}-e g h+f g^{2}\right) \ln (h x+g)}{h^{3}}-\frac{b^{2} f \arcsin (c x)^{2}}{4 c^{2} h}+\frac{b^{2} f x^{2} \arcsin (c x)^{2}}{2 h}-\frac{\mathrm{I} b^{2}\left(d h^{2}-e g h+f g^{2}\right) \arcsin (c x)^{3}}{3 h^{3}} \\
& +\frac{b^{2}\left(d h^{2}-e g h+f g^{2}\right) \arcsin (c x)^{2} \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g-\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}+\frac{b^{2}\left(d h^{2}-e g h+f g^{2}\right) \arcsin (c x)^{2} \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g+\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}} \\
& +\frac{a b f x^{2} \arcsin (c x)}{h}-\frac{b^{2}(-e h+f g) x \arcsin (c x)^{2}}{h^{2}}-\frac{a^{2}(-e h+f g) x}{h^{2}}-\frac{a b f \arcsin (c x)}{2 c^{2} h}-\frac{2 a b(-e h+f g) x \arcsin (c x)}{h^{2}} \\
& -\frac{\mathrm{I} a b\left(d h^{2}-e g h+f g^{2}\right) \arcsin (c x)^{2}}{h^{3}} \\
& \text { Result(type 8, } 30 \text { leaves): } \\
& \int \frac{\left(f x^{2}+e x+d\right)(a+b \arcsin (c x))^{2}}{h x+g} \mathrm{~d} x
\end{aligned}
$$

Problem 34: Unable to integrate problem.

$$
\int \frac{\left(f x^{2}+e x+d\right)(a+b \arcsin (c x))^{2}}{(h x+g)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 1365 leaves, 45 steps):

$$
\begin{aligned}
& \frac{2 a b c\left(d h^{2}-e g h+f g^{2}\right) \arctan \left(\frac{c^{2} g x+h}{\sqrt{c^{2} g^{2}-h^{2}} \sqrt{-c^{2} x^{2}+1}}\right)}{h^{3} \sqrt{c^{2} g^{2}-h^{2}}}+\frac{2 \mathrm{I} a b(-e h+2 f g) \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g-\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}} \\
& \quad+\frac{2 \mathrm{I} b^{2}(-e h+2 f g) \arcsin (c x) \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g-\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}+\frac{2 \mathrm{I} a b(-e h+2 f g) \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g+\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2 \mathrm{I} b^{2}(-e h+2 f g) \arcsin (c x) \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g+\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}-\frac{2 a b(-e h+2 f g) \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g-\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}} \\
& -\frac{2 a b(-e h+2 f g) \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g+\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}-\frac{2 b^{2} c\left(d h^{2}-e g h+f g^{2}\right) \operatorname{polylog}\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g-\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3} \sqrt{c^{2} g^{2}-h^{2}}} \\
& +\frac{2 b^{2} c\left(d h^{2}-e g h+f g^{2}\right) \text { polylog }\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g+\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3} \sqrt{c^{2} g^{2}-h^{2}}}+\frac{2 a b f \sqrt{-c^{2} x^{2}+1}}{c h^{2}}+\frac{2 b^{2} f \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{c h^{2}}-\frac{2 b^{2} f x}{h^{2}} \\
& -\frac{a^{2}\left(d h^{2}-e g h+f g^{2}\right)}{h^{3}(h x+g)}-\frac{2 b^{2}(-e h+2 f g) \operatorname{polylog}\left(3, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g-\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}-\frac{2 b^{2}(-e h+2 f g) \operatorname{polylog}\left(3, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g+\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}} \\
& -\frac{a^{2}(-e h+2 f g) \ln (h x+g)}{h^{3}}+\frac{2 \mathrm{I} b^{2} c\left(d h^{2}-e g h+f g^{2}\right) \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g+\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3} \sqrt{c^{2} g^{2}-h^{2}}} \\
& -\frac{2 \mathrm{I} b^{2} c\left(d h^{2}-e g h+f g^{2}\right) \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g-\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3} \sqrt{c^{2} g^{2}-h^{2}}}-\frac{b^{2}\left(d h^{2}-e g h+f g^{2}\right) \arcsin (c x)^{2}}{h^{3}(h x+g)} \\
& -\frac{b^{2}(-e h+2 f g) \arcsin (c x)^{2} \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g-\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}}-\frac{b^{2}(-e h+2 f g) \arcsin (c x)^{2} \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) h}{c g+\sqrt{c^{2} g^{2}-h^{2}}}\right)}{h^{3}} \\
& +\frac{\mathrm{I} a b(-e h+2 f g) \arcsin (c x)^{2}}{h^{3}}+\frac{b^{2} f x \arcsin (c x)^{2}}{h^{2}}+\frac{a^{2} f x}{h^{2}}+\frac{\mathrm{I} b^{2}(-e h+2 f g) \arcsin (c x)^{3}}{3 h^{3}}+\frac{2 a b f x \arcsin (c x)}{h^{2}} \\
& -\frac{2 a b\left(d h^{2}-e g h+f g^{2}\right) \arcsin (c x)}{h^{3}(h x+g)}
\end{aligned}
$$

Result(type 8, 30 leaves):

$$
\int \frac{\left(f x^{2}+e x+d\right)(a+b \arcsin (c x))^{2}}{(h x+g)^{2}} \mathrm{~d} x
$$

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(e h x^{2}+2 d h x+e f\right)(a+b \arcsin (c x))^{2}}{(e x+d)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 520 leaves, 20 steps):

$$
\begin{aligned}
& -\frac{2 b^{2} h x}{e}+\frac{h x(a+b \arcsin (c x))^{2}}{e}-\frac{\left(f-\frac{d^{2} h}{e^{2}}\right)(a+b \arcsin (c x))^{2}}{e x+d}+\frac{2 a b c\left(-d^{2} h+e^{2} f\right) \arctan \left(\frac{c^{2} d x+e}{\sqrt{d^{2} c^{2}-e^{2}} \sqrt{-c^{2} x^{2}+1}}\right)}{e^{2} \sqrt{d^{2} c^{2}-e^{2}}} \\
& - \\
& \quad-\frac{2 \mathrm{I} b^{2} c\left(-d^{2} h+e^{2} f\right) \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2} \sqrt{d^{2} c^{2}-e^{2}}}+\frac{2 \mathrm{I} b^{2} c\left(-d^{2} h+e^{2} f\right) \arcsin (c x) \ln \left(1-\frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{c}+\frac{2 b^{2} c\left(-d^{2} h+e^{2} f\right) \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right.}{c d-\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2} \sqrt{d^{2} c^{2}-e^{2}}}+\frac{2 b^{2} c\left(-d^{2} h+e^{2} f\right) \operatorname{polylog}\left(2, \frac{\mathrm{I} e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)}{c d+\sqrt{d^{2} c^{2}-e^{2}}}\right)}{e^{2} \sqrt{d^{2} c^{2}-e^{2}}}+\frac{2 a b h \sqrt{-c^{2} x^{2}+1}}{c e} \\
& \quad+\frac{2 b^{2} h \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{c e}
\end{aligned}
$$

Result(type 4, 1404 leaves):

$$
\begin{aligned}
& \frac{a^{2} h x}{e}+\frac{c a^{2} d^{2} h}{e^{2}(c e x+c d)}-\frac{c a^{2} f}{c e x+c d}+\frac{2 b^{2} h \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{c e}+\frac{b^{2} h \arcsin (c x)^{2} x}{e}-\frac{2 b^{2} h x}{e}+\frac{c b^{2} \arcsin (c x)^{2} d^{2} h}{e^{2}(c e x+c d)}-\frac{c b^{2} \arcsin (c x)^{2} f}{c e x+c d} \\
& +\frac{2 c b^{2} \sqrt{-d^{2} c^{2}+e^{2}} \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2} h}{e^{2}\left(d^{2} c^{2}-e^{2}\right)} \\
& -\frac{2 c b^{2} \sqrt{-d^{2} c^{2}+e^{2}} \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right) f}{d^{2} c^{2}-e^{2}} \\
& -\frac{2 c b^{2} \sqrt{-d^{2} c^{2}+e^{2}} \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right) d^{2} h}{e^{2}\left(d^{2} c^{2}-e^{2}\right)} \\
& +\frac{2 c b^{2} \sqrt{-d^{2} c^{2}+e^{2}} \arcsin (c x) \ln \left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right) f}{d^{2} c^{2}-e^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{2 \mathrm{I} c b^{2} \sqrt{-d^{2} c^{2}+e^{2}} \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right) h d^{2}}{e^{2}\left(d^{2} c^{2}-e^{2}\right)} \\
& +\frac{2 \mathrm{I} c b^{2} \sqrt{-d^{2} c^{2}+e^{2}} \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)-\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d-\sqrt{-d^{2} c^{2}+e^{2}}}\right) f}{d^{2} c^{2}-e^{2}} \\
& -\frac{2 \mathrm{I} c b^{2} \sqrt{-d^{2} c^{2}+e^{2}} \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right) f}{d^{2} c^{2}-e^{2}} \\
& +\frac{2 \mathrm{I} c b^{2} \sqrt{-d^{2} c^{2}+e^{2}} \operatorname{dilog}\left(\frac{\mathrm{I} c d+e\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right)+\sqrt{-d^{2} c^{2}+e^{2}}}{\mathrm{I} c d+\sqrt{-d^{2} c^{2}+e^{2}}}\right) h d^{2}}{e^{2}\left(d^{2} c^{2}-e^{2}\right)}+\frac{2 a b \arcsin (c x) h x}{e}+\frac{2 c a b \arcsin (c x) d^{2} h}{e^{2}(c e x+c d)} \\
& -\frac{2 c a b \arcsin (c x) f}{c e x+c d} \\
& +\frac{2 c a b \ln \left(\frac{\left.-\frac{2\left(d^{2} c^{2}-e^{2}\right)}{e^{2}}+\frac{2 c d\left(c x+\frac{c d}{e}\right)}{e}+2 \sqrt{-\frac{d^{2} c^{2}-e^{2}}{e^{2}}} \sqrt{-\left(c x+\frac{c d}{e}\right)^{2}+\frac{2 c d\left(c x+\frac{c d}{e}\right)}{e}-\frac{d^{2} c^{2}-e^{2}}{e^{2}}}\right)}{c x+\frac{c d}{e}}\right) d^{2} h}{e^{3} \sqrt{-\frac{d^{2} c^{2}-e^{2}}{e^{2}}}} \\
& 2 c a b \ln \left(\frac{-\frac{2\left(d^{2} c^{2}-e^{2}\right)}{e^{2}}+\frac{2 c d\left(c x+\frac{c d}{e}\right)}{e}+2 \sqrt{-\frac{d^{2} c^{2}-e^{2}}{e^{2}}} \sqrt{c x+\frac{c d}{e}}-\left(c x+\frac{c d}{e}\right)^{2}+\frac{2 c d\left(c x+\frac{c d}{e}\right)}{e}-\frac{d^{2} c^{2}-e^{2}}{e^{2}}}{}\right) f f \\
& e \sqrt{-\frac{d^{2} c^{2}-e^{2}}{e^{2}}} \\
& +\frac{2 a b h \sqrt{-c^{2} x^{2}+1}}{c e}
\end{aligned}
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \frac{\arcsin (b x+a)}{x} \mathrm{~d} x
$$

Optimal(type 4, 204 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{\mathrm{I} \arcsin (b x+a)^{2}}{2}+\arcsin (b x+a) \ln \left(1-\frac{\mathrm{I}(b x+a)+\sqrt{1-(b x+a)^{2}}}{\mathrm{I} a-\sqrt{-a^{2}+1}}\right)+\arcsin (b x+a) \ln \left(1-\frac{\mathrm{I}(b x+a)+\sqrt{1-(b x+a)^{2}}}{\mathrm{I} a+\sqrt{-a^{2}+1}}\right)-\mathrm{I} \operatorname{poly} \log (2, \\
& \left.\quad \frac{\mathrm{I}(b x+a)+\sqrt{1-(b x+a)^{2}}}{\mathrm{I} a-\sqrt{-a^{2}+1}}\right)-\mathrm{I} \text { polylog }\left(2, \frac{\mathrm{I}(b x+a)+\sqrt{1-(b x+a)^{2}}}{\mathrm{I} a+\sqrt{-a^{2}+1}}\right) \\
& \text { Result(type 4,578 leaves) : }
\end{aligned}
$$

$$
-\frac{\mathrm{I} \operatorname{dilog}\left(\frac{\mathrm{I} a-\sqrt{-a^{2}+1}-\mathrm{I}(b x+a)-\sqrt{1-(b x+a)^{2}}}{\mathrm{I} a-\sqrt{-a^{2}+1}}\right) a^{2}}{a^{2}-1}+\frac{\arcsin (b x+a) \ln \left(\frac{\mathrm{I} a+\sqrt{-a^{2}+1}-\mathrm{I}(b x+a)-\sqrt{1-(b x+a)^{2}}}{\mathrm{I} a+\sqrt{-a^{2}+1}}\right) a^{2}}{a^{2}-1}
$$

$$
+\frac{\arcsin (b x+a) \ln \left(\frac{\mathrm{I} a-\sqrt{-a^{2}+1}-\mathrm{I}(b x+a)-\sqrt{1-(b x+a)^{2}}}{\mathrm{I} a-\sqrt{-a^{2}+1}}\right) a^{2}}{a^{2}-1}
$$

Problem 41: Unable to integrate problem.

$$
\int \frac{\arcsin (b x+a)^{3}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 342 leaves, 13 steps):

$$
-\frac{\arcsin (b x+a)^{3}}{x}+\frac{3 \mathrm{I} b \arcsin (b x+a)^{2} \ln \left(1+\frac{\mathrm{I}\left(\mathrm{I}(b x+a)+\sqrt{1-(b x+a)^{2}}\right)}{a-\sqrt{a^{2}-1}}\right)}{\sqrt{a^{2}-1}}
$$

$$
\begin{aligned}
& -\frac{3 \mathrm{I} b \arcsin (b x+a)^{2} \ln \left(1+\frac{\mathrm{I}\left(\mathrm{I}(b x+a)+\sqrt{1-(b x+a)^{2}}\right)}{a+\sqrt{a^{2}-1}}\right)}{\sqrt{a^{2}-1}}+\frac{6 b \arcsin (b x+a) \operatorname{polylog}\left(2, \frac{-\mathrm{I}\left(\mathrm{I}(b x+a)+\sqrt{1-(b x+a)^{2}}\right)}{a-\sqrt{a^{2}-1}}\right)}{\sqrt{a^{2}-1}} \\
& -\frac{6 b \arcsin (b x+a) \operatorname{polylog}\left(2, \frac{-\mathrm{I}\left(\mathrm{I}(b x+a)+\sqrt{1-(b x+a)^{2}}\right)}{a+\sqrt{a^{2}-1}}\right)}{\sqrt{a^{2}-1}}+\frac{6 \mathrm{I} b \operatorname{polylog}\left(3, \frac{-\mathrm{I}\left(\mathrm{I}(b x+a)+\sqrt{1-(b x+a)^{2}}\right)}{a-\sqrt{a^{2}-1}}\right)}{\sqrt{a^{2}-1}}
\end{aligned}
$$

Result(type 8, 14 leaves):

$$
\int \frac{\arcsin (b x+a)^{3}}{x^{2}} \mathrm{~d} x
$$

Problem 53: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arcsin (d x+c))^{3}}{(d e x+c e)^{4}} \mathrm{~d} x
$$

Optimal(type 4, 331 leaves, 16 steps):

$$
\begin{aligned}
& -\frac{b^{2}(a+b \arcsin (d x+c))}{d e^{4}(d x+c)}-\frac{(a+b \arcsin (d x+c))^{3}}{3 d e^{4}(d x+c)^{3}}-\frac{b(a+b \arcsin (d x+c))^{2} \operatorname{arctanh}\left(\mathrm{I}(d x+c)+\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}} \\
& -\frac{b^{3} \operatorname{arctanh}\left(\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}}+\frac{\mathrm{I} b^{2}(a+b \arcsin (d x+c)) \operatorname{polylog}\left(2,-\mathrm{I}(d x+c)-\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}} \\
& -\frac{\mathrm{I} b^{2}(a+b \arcsin (d x+c)) \operatorname{polylog}\left(2, \mathrm{I}(d x+c)+\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}}-\frac{b^{3} \operatorname{polylog}\left(3,-\mathrm{I}(d x+c)-\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}} \\
& \quad+\frac{b^{3} \operatorname{polylog}\left(3, \mathrm{I}(d x+c)+\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}}-\frac{b(a+b \arcsin (d x+c))^{2} \sqrt{1-(d x+c)^{2}}}{2 d e^{4}(d x+c)^{2}}
\end{aligned}
$$

Result(type 4, 715 leaves):

$$
\begin{aligned}
& -\frac{a^{3}}{3 d e^{4}(d x+c)^{3}}-\frac{b^{3} \arcsin (d x+c)^{2} \sqrt{1-(d x+c)^{2}}}{2 d e^{4}(d x+c)^{2}}-\frac{b^{3} \arcsin (d x+c)^{3}}{3 d e^{4}(d x+c)^{3}}-\frac{b^{3} \arcsin (d x+c)}{d e^{4}(d x+c)} \\
& +\frac{b^{3} \arcsin (d x+c)^{2} \ln \left(1-\mathrm{I}(d x+c)-\sqrt{1-(d x+c)^{2}}\right)}{2 d e^{4}}-\frac{\mathrm{I} b^{3} \arcsin (d x+c) \operatorname{poly} \log \left(2, \mathrm{I}(d x+c)+\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{b^{3} \operatorname{polylog}\left(3, \mathrm{I}(d x+c)+\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}}-\frac{b^{3} \arcsin (d x+c)^{2} \ln \left(1+\mathrm{I}(d x+c)+\sqrt{1-(d x+c)^{2}}\right)}{2 d e^{4}} \\
& +\frac{\mathrm{I} a b^{2} \operatorname{polylog}\left(2,-\mathrm{I}(d x+c)-\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}}-\frac{b^{3} \operatorname{polylog}\left(3,-\mathrm{I}(d x+c)-\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}} \\
& -\frac{2 b^{3} \operatorname{arctanh}\left(\mathrm{I}(d x+c)+\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}}-\frac{a b^{2} \sqrt{1-(d x+c)^{2}} \arcsin (d x+c)}{d e^{4}(d x+c)^{2}}-\frac{a b^{2} \arcsin (d x+c)^{2}}{d e^{4}(d x+c)^{3}}-\frac{a b^{2}}{d e^{4}(d x+c)} \\
& +\frac{a b^{2} \arcsin (d x+c) \ln \left(1-\mathrm{I}(d x+c)-\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}}-\frac{\mathrm{I} a b^{2} \operatorname{poly} \log \left(2, \mathrm{I}(d x+c)+\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}} \\
& -\frac{a b^{2} \arcsin (d x+c) \ln \left(1+\mathrm{I}(d x+c)+\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}}+\frac{\mathrm{I} b^{3} \arcsin (d x+c) \operatorname{polylog}\left(2,-\mathrm{I}(d x+c)-\sqrt{1-(d x+c)^{2}}\right)}{d e^{4}} \\
& -\frac{a^{2} b \arcsin (d x+c)}{d e^{4}(d x+c)^{3}}-\frac{a^{2} b \sqrt{1-(d x+c)^{2}}}{2 d e^{4}(d x+c)^{2}}-\frac{a^{2} b \operatorname{arctanh}\left(\frac{1}{\sqrt{1-(d x+c)^{2}}}\right)}{2 d e^{4}}
\end{aligned}
$$

Problem 55: Result more than twice size of optimal antiderivative.

$$
\int(d e x+c e)(a+b \arcsin (d x+c))^{4} \mathrm{~d} x
$$

Optimal(type 3, 182 leaves, 9 steps):
$\frac{3 b^{4} e(d x+c)^{2}}{4 d}+\frac{3 b^{2} e(a+b \arcsin (d x+c))^{2}}{4 d}-\frac{3 b^{2} e(d x+c)^{2}(a+b \arcsin (d x+c))^{2}}{2 d}-\frac{e(a+b \arcsin (d x+c))^{4}}{4 d}$
$+\frac{e(d x+c)^{2}(a+b \arcsin (d x+c))^{4}}{2 d}-\frac{3 b^{3} e(d x+c)(a+b \arcsin (d x+c)) \sqrt{1-(d x+c)^{2}}}{2 d}$
$+\frac{b e(d x+c)(a+b \arcsin (d x+c))^{3} \sqrt{1-(d x+c)^{2}}}{d}$

$$
\begin{aligned}
& \text { Result(type 3, } 411 \text { leaves): } \\
& \frac{1}{d}\left(\frac{(d x+c)^{2} e a^{4}}{2}+e b^{4}\left(\frac{\left((d x+c)^{2}-1\right) \arcsin (d x+c)^{4}}{2}+\arcsin (d x+c)^{3}\left((d x+c) \sqrt{1-(d x+c)^{2}}+\arcsin (d x+c)\right)\right.\right. \\
& \quad-\frac{3\left((d x+c)^{2}-1\right) \arcsin (d x+c)^{2}}{2}-\frac{3 \arcsin (d x+c)\left((d x+c) \sqrt{1-(d x+c)^{2}}+\arcsin (d x+c)\right)}{2}+\frac{3 \arcsin (d x+c)^{2}}{4}+\frac{3(d x+c)^{2}}{4} \\
& \left.\quad-\frac{3 \arcsin (d x+c)^{4}}{4}\right)+4 e a b^{3}\left(\frac{\arcsin (d x+c)^{3}\left((d x+c)^{2}-1\right)}{2}+\frac{3 \arcsin (d x+c)^{2}\left((d x+c) \sqrt{1-(d x+c)^{2}}+\arcsin (d x+c)\right)}{4}\right. \\
& \left.\quad-\frac{3\left((d x+c)^{2}-1\right) \arcsin (d x+c)}{4}-\frac{3(d x+c) \sqrt{1-(d x+c)^{2}}}{8}-\frac{3 \arcsin (d x+c)}{8}-\frac{\arcsin (d x+c)^{3}}{2}\right)
\end{aligned}
$$

$+6 e a^{2} b^{2}\left(\frac{\left((d x+c)^{2}-1\right) \arcsin (d x+c)^{2}}{2}+\frac{\arcsin (d x+c)\left((d x+c) \sqrt{1-(d x+c)^{2}}+\arcsin (d x+c)\right)}{2}-\frac{\arcsin (d x+c)^{2}}{4}-\frac{(d x+c)^{2}}{4}\right)$
$\left.+4 e a^{3} b\left(\frac{(d x+c)^{2} \arcsin (d x+c)}{2}+\frac{(d x+c) \sqrt{1-(d x+c)^{2}}}{4}-\frac{\arcsin (d x+c)}{4}\right)\right)$

Problem 60: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d e x+c e)^{3}}{(a+b \arcsin (d x+c))^{3}} d x
$$

Optimal(type 4, 239 leaves, 20 steps):

$$
\begin{aligned}
& -\frac{3 e^{3}(d x+c)^{2}}{2 b^{2} d(a+b \arcsin (d x+c))}+\frac{2 e^{3}(d x+c)^{4}}{b^{2} d(a+b \arcsin (d x+c))}-\frac{e^{3} \cos \left(\frac{2 a}{b}\right) \operatorname{si}\left(\frac{2(a+b \arcsin (d x+c))}{b}\right)}{2}+\frac{e^{3} \cos \left(\frac{4 a}{b}\right) \operatorname{Si}\left(\frac{4(a+b \arcsin (d x+c))}{b}\right)}{} \begin{array}{l}
\left.\quad+\frac{b^{3} d}{e^{3} d}\right) \\
\quad-\frac{e^{3}(d x+c)^{3} \sqrt{1-(d x+c)^{2}}}{2 b d(a+b \arcsin (d x+c))^{2}}
\end{array}
\end{aligned}
$$

Result (type 4, 505 leaves):
$\frac{1}{16 d(a+b \arcsin (d x+c))^{2} b^{3}}\left(e^{3}\left(16 \operatorname{Si}\left(4 \arcsin (d x+c)+\frac{4 a}{b}\right) \cos \left(\frac{4 a}{b}\right) \arcsin (d x+c)^{2} b^{2}-16 \mathrm{Ci}\left(4 \arcsin (d x+c)+\frac{4 a}{b}\right) \sin \left(\frac{4 a}{b}\right) \arcsin (d x\right.\right.$
$+c)^{2} b^{2}-8 \operatorname{Si}\left(2 \arcsin (d x+c)+\frac{2 a}{b}\right) \cos \left(\frac{2 a}{b}\right) \arcsin (d x+c)^{2} b^{2}+8 \mathrm{Ci}\left(2 \arcsin (d x+c)+\frac{2 a}{b}\right) \sin \left(\frac{2 a}{b}\right) \arcsin (d x+c)^{2} b^{2}$
$+32 \operatorname{Si}\left(4 \arcsin (d x+c)+\frac{4 a}{b}\right) \cos \left(\frac{4 a}{b}\right) \arcsin (d x+c) a b-32 \mathrm{Ci}\left(4 \arcsin (d x+c)+\frac{4 a}{b}\right) \sin \left(\frac{4 a}{b}\right) \arcsin (d x+c) a b-16 \operatorname{Si}(2 \arcsin (d x+c)$
$\left.+\frac{2 a}{b}\right) \cos \left(\frac{2 a}{b}\right) \arcsin (d x+c) a b+16 \mathrm{Ci}\left(2 \arcsin (d x+c)+\frac{2 a}{b}\right) \sin \left(\frac{2 a}{b}\right) \arcsin (d x+c) a b+16 \operatorname{Si}\left(4 \arcsin (d x+c)+\frac{4 a}{b}\right) \cos \left(\frac{4 a}{b}\right) a^{2}$
$+4 \cos (4 \arcsin (d x+c)) \arcsin (d x+c) b^{2}-16 \mathrm{Ci}\left(4 \arcsin (d x+c)+\frac{4 a}{b}\right) \sin \left(\frac{4 a}{b}\right) a^{2}-8 \operatorname{Si}\left(2 \arcsin (d x+c)+\frac{2 a}{b}\right) \cos \left(\frac{2 a}{b}\right) a^{2}$
$+8 \mathrm{Ci}\left(2 \arcsin (d x+c)+\frac{2 a}{b}\right) \sin \left(\frac{2 a}{b}\right) a^{2}-4 \cos (2 \arcsin (d x+c)) \arcsin (d x+c) b^{2}+\sin (4 \arcsin (d x+c)) b^{2}+4 \cos (4 \arcsin (d x+c)) a b$
$\left.\left.-2 \sin (2 \arcsin (d x+c)) b^{2}-4 \cos (2 \arcsin (d x+c)) a b\right)\right)$

Problem 63: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d e x+c e)^{4}}{(a+b \arcsin (d x+c))^{4}} \mathrm{~d} x
$$

Optimal(type 4, 390 leaves, 24 steps):

$$
\begin{aligned}
& -\frac{2 e^{4}(d x+c)^{3}}{3 b^{2} d(a+b \arcsin (d x+c))^{2}}+\frac{5 e^{4}(d x+c)^{5}}{6 b^{2} d(a+b \arcsin (d x+c))^{2}}+\frac{e^{4} \cos \left(\frac{a}{b}\right) \operatorname{si}\left(\frac{a+b \arcsin (d x+c)}{b}\right)}{48 b^{4} d}+\frac{125 e^{4} \cos \left(\frac{5 a}{b}\right) \operatorname{si}\left(\frac{5(a+b \arcsin (d x+c))}{b}\right)}{32 b^{4} d}-\frac{26 e^{4} d}{b}-\frac{e^{4} \operatorname{Ci}\left(\frac{a+b \arcsin (d x+c)}{b}\right) \operatorname{si}\left(\frac{3(a+b \arcsin (d x+c))}{b}\right)}{48 b^{4} d} \\
& -\frac{27 e^{4} \operatorname{Ci}\left(\frac{3(a+b \arcsin (d x+c))}{b}\right) \sin \left(\frac{3 a}{b}\right)}{32 b^{4} d}-\frac{125 e^{4} \operatorname{Ci}\left(\frac{5(a+b \arcsin (d x+c))}{b}\right) \sin \left(\frac{5 a}{b}\right)}{96 b^{4} d}-\frac{e^{4}(d x+c)^{4} \sqrt{1-(d x+c)^{2}}}{3 b d(a+b \arcsin (d x+c))^{3}} \\
& +\frac{2 e^{4}(d x+c)^{2} \sqrt{1-(d x+c)^{2}}}{b^{3} d(a+b \arcsin (d x+c))}+\frac{25 e^{4}(d x+c)^{4} \sqrt{1-(d x+c)^{2}}}{6 b^{3} d(a+b \arcsin (d x+c))}
\end{aligned}
$$

Result(type 4, 1137 leaves):
$-\frac{1}{96 d(a+b \arcsin (d x+c))^{3} b^{4}}\left(e^{4}\left(243 \cos \left(\frac{3 a}{b}\right) \arcsin (d x+c)^{2} \operatorname{Si}\left(3 \arcsin (d x+c)+\frac{3 a}{b}\right) a b^{2}-243 \sin \left(\frac{3 a}{b}\right) \arcsin (d x+c)^{2} \mathrm{Ci}(3 \arcsin (d x+c)\right.\right.$
$\left.+\frac{3 a}{b}\right) a b^{2}+243 \cos \left(\frac{3 a}{b}\right) \arcsin (d x+c) \operatorname{Si}\left(3 \arcsin (d x+c)+\frac{3 a}{b}\right) a^{2} b-243 \sin \left(\frac{3 a}{b}\right) \arcsin (d x+c) \operatorname{Ci}\left(3 \arcsin (d x+c)+\frac{3 a}{b}\right) a^{2} b$
$-375 \arcsin (d x+c)^{2} \operatorname{Si}\left(5 \arcsin (d x+c)+\frac{5 a}{b}\right) \cos \left(\frac{5 a}{b}\right) a b^{2}+375 \arcsin (d x+c)^{2} \operatorname{Ci}\left(5 \arcsin (d x+c)+\frac{5 a}{b}\right) \sin \left(\frac{5 a}{b}\right) a b^{2}-375 \arcsin (d x$
+c) $\operatorname{Si}\left(5 \arcsin (d x+c)+\frac{5 a}{b}\right) \cos \left(\frac{5 a}{b}\right) a^{2} b+375 \arcsin (d x+c) \operatorname{Ci}\left(5 \arcsin (d x+c)+\frac{5 a}{b}\right) \sin \left(\frac{5 a}{b}\right) a^{2} b+6 \sin \left(\frac{a}{b}\right) \arcsin (d x$
$+c)^{2} \operatorname{Ci}\left(\arcsin (d x+c)+\frac{a}{b}\right) a b^{2}-6 \arcsin (d x+c)^{2} \operatorname{Si}\left(\arcsin (d x+c)+\frac{a}{b}\right) \cos \left(\frac{a}{b}\right) a b^{2}+6 \sin \left(\frac{a}{b}\right) \arcsin (d x+c) \operatorname{Ci}(\arcsin (d x+c)$
$\left.+\frac{a}{b}\right) a^{2} b-6 \arcsin (d x+c) \operatorname{Si}\left(\arcsin (d x+c)+\frac{a}{b}\right) \cos \left(\frac{a}{b}\right) a^{2} b-2 \sqrt{1-(d x+c)^{2}} a^{2} b-4 \sqrt{1-(d x+c)^{2}} \arcsin (d x+c) a b^{2}$
$+81 \cos \left(\frac{3 a}{b}\right) \arcsin (d x+c)^{3} \operatorname{Si}\left(3 \arcsin (d x+c)+\frac{3 a}{b}\right) b^{3}-81 \sin \left(\frac{3 a}{b}\right) \arcsin (d x+c)^{3} \mathrm{Ci}\left(3 \arcsin (d x+c)+\frac{3 a}{b}\right) b^{3}+54 \cos (3 \arcsin (d x$
$+c)) \arcsin (d x+c) a b^{2}-125 \arcsin (d x+c)^{3} \operatorname{Si}\left(5 \arcsin (d x+c)+\frac{5 a}{b}\right) \cos \left(\frac{5 a}{b}\right) b^{3}+125 \arcsin (d x+c)^{3} \operatorname{Ci}(5 \arcsin (d x+c)$
$\left.+\frac{5 a}{b}\right) \sin \left(\frac{5 a}{b}\right) b^{3}-50 \arcsin (d x+c) \cos (5 \arcsin (d x+c)) a b^{2}+2 \sin \left(\frac{a}{b}\right) \arcsin (d x+c)^{3} \mathrm{Ci}\left(\arcsin (d x+c)+\frac{a}{b}\right) b^{3}-2 \arcsin (d x$
$+c)^{3} \operatorname{Si}\left(\arcsin (d x+c)+\frac{a}{b}\right) \cos \left(\frac{a}{b}\right) b^{3}-81 \sin \left(\frac{3 a}{b}\right) \operatorname{Ci}\left(3 \arcsin (d x+c)+\frac{3 a}{b}\right) a^{3}+9 \sin (3 \arcsin (d x+c)) \arcsin (d x+c) b^{3}$
$+27 \cos (3 \arcsin (d x+c)) a^{2} b-5 \sin (5 \arcsin (d x+c)) a b^{2}-25 \cos (5 \arcsin (d x+c)) a^{2} b+2 \sin \left(\frac{a}{b}\right) \operatorname{Ci}\left(\arcsin (d x+c)+\frac{a}{b}\right) a^{3}-2 \arcsin (d x$
$+c)(d x+c) b^{3}-2 \operatorname{Si}\left(\arcsin (d x+c)+\frac{a}{b}\right) \cos \left(\frac{a}{b}\right) a^{3}-2 \sqrt{1-(d x+c)^{2}} \arcsin (d x+c)^{2} b^{3}-2(d x+c) a b^{2}+27 \cos (3 \arcsin (d x$
$+c)) \arcsin (d x+c)^{2} b^{3}+81 \cos \left(\frac{3 a}{b}\right) \operatorname{Si}\left(3 \arcsin (d x+c)+\frac{3 a}{b}\right) a^{3}+9 \sin (3 \arcsin (d x+c)) a b^{2}-25 \arcsin (d x+c)^{2} \cos (5 \arcsin (d x+c)) b^{3}$
$-5 \sin (5 \arcsin (d x+c)) \arcsin (d x+c) b^{3}-125 \operatorname{Si}\left(5 \arcsin (d x+c)+\frac{5 a}{b}\right) \cos \left(\frac{5 a}{b}\right) a^{3}+125 \mathrm{Ci}\left(5 \arcsin (d x+c)+\frac{5 a}{b}\right) \sin \left(\frac{5 a}{b}\right) a^{3}$ $\left.\left.+4 \sqrt{1-(d x+c)^{2}} b^{3}-6 \cos (3 \arcsin (d x+c)) b^{3}+2 \cos (5 \arcsin (d x+c)) b^{3}\right)\right)$

Problem 65: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(a+b \arcsin (d x+c))^{5}} d x
$$

Optimal(type 4, 178 leaves, 9 steps):
$\frac{d x+c}{12 b^{2} d(a+b \arcsin (d x+c))^{3}}+\frac{-d x-c}{24 b^{4} d(a+b \arcsin (d x+c))}+\frac{\operatorname{Ci}\left(\frac{a+b \arcsin (d x+c)}{b}\right) \cos \left(\frac{a}{b}\right)}{24 b^{5} d}+\frac{\operatorname{si}\left(\frac{a+b \arcsin (d x+c)}{b}\right) \sin \left(\frac{a}{b}\right)}{24 b^{5} d}$

$$
-\frac{\sqrt{1-(d x+c)^{2}}}{4 b d(a+b \arcsin (d x+c))^{4}}+\frac{\sqrt{1-(d x+c)^{2}}}{24 b^{3} d(a+b \arcsin (d x+c))^{2}}
$$

Result(type 4, 386 leaves):
$\frac{1}{d}\left(-\frac{\sqrt{1-(d x+c)^{2}}}{4(a+b \arcsin (d x+c))^{4} b}+\frac{1}{24(a+b \arcsin (d x+c))^{3} b^{5}}\left(\sin \left(\frac{a}{b}\right) \arcsin (d x+c)^{3} \operatorname{Si}\left(\arcsin (d x+c)+\frac{a}{b}\right) b^{3}+\arcsin (d x+c)^{3} \mathrm{Ci}(\arcsin (d x\right.\right.$ $\left.+c)+\frac{a}{b}\right) \cos \left(\frac{a}{b}\right) b^{3}+3 \sin \left(\frac{a}{b}\right) \arcsin (d x+c)^{2} \operatorname{Si}\left(\arcsin (d x+c)+\frac{a}{b}\right) a b^{2}+3 \arcsin (d x+c)^{2} \operatorname{Ci}\left(\arcsin (d x+c)+\frac{a}{b}\right) \cos \left(\frac{a}{b}\right) a b^{2}$
$+3 \sin \left(\frac{a}{b}\right) \arcsin (d x+c) \operatorname{Si}\left(\arcsin (d x+c)+\frac{a}{b}\right) a^{2} b-\arcsin (d x+c)^{2}(d x+c) b^{3}+3 \arcsin (d x+c) \operatorname{Ci}\left(\arcsin (d x+c)+\frac{a}{b}\right) \cos \left(\frac{a}{b}\right) a^{2} b$ $+\sin \left(\frac{a}{b}\right) \operatorname{Si}\left(\arcsin (d x+c)+\frac{a}{b}\right) a^{3}+\sqrt{1-(d x+c)^{2}} \arcsin (d x+c) b^{3}-2 \arcsin (d x+c)(d x+c) a b^{2}+\operatorname{Ci}\left(\arcsin (d x+c)+\frac{a}{b}\right) \cos \left(\frac{a}{b}\right) a^{3}$ $\left.\left.+\sqrt{1-(d x+c)^{2}} a b^{2}-(d x+c) a^{2} b+2(d x+c) b^{3}\right)\right)$

Problem 69: Result more than twice size of optimal antiderivative.

$$
\int(d e x+c e)^{3}(a+b \arcsin (d x+c))^{5 / 2} \mathrm{~d} x
$$

Optimal(type 4, 391 leaves, 29 steps):

$$
\begin{aligned}
& -\frac{15 b^{5} / 2 e^{3} \text { FresnelS }\left(\frac{2 \sqrt{a+b \arcsin (d x+c)}}{\sqrt{b} \sqrt{\pi}}\right) \sin \left(\frac{2 a}{b}\right) \sqrt{\pi}}{256 d}+\frac{15 b e^{3}(d x+c)(a+b \arcsin (d x+c))^{3 / 2} \sqrt{1-(d x+c)^{2}}}{64 d} \\
& +\frac{5 b e^{3}(d x+c)^{3}(a+b \arcsin (d x+c))^{3 / 2} \sqrt{1-(d x+c)^{2}}}{32 d}+\frac{225 b^{2} e^{3} \sqrt{a+b \arcsin (d x+c)}}{2048 d}-\frac{45 b^{2} e^{3}(d x+c)^{2} \sqrt{a+b \arcsin (d x+c)}}{256 d}
\end{aligned}
$$

$$
-\frac{15 b^{2} e^{3}(d x+c)^{4} \sqrt{a+b \arcsin (d x+c)}}{256 d}
$$

Result(type 4, 798 leaves):

$$
\begin{aligned}
& -\frac{1}{8192 d \sqrt{\pi}}\left(e ^ { 3 } b \left(1024 \sqrt{\frac{1}{b}} \sqrt{a+b \arcsin (d x+c)} \cos \left(\frac{2(a+b \arcsin (d x+c))}{b}-\frac{2 a}{b}\right) \sqrt{\pi} \arcsin (d x+c)^{2} b^{2}\right.\right. \\
& -256 \sqrt{\frac{1}{b}} \sqrt{a+b \arcsin (d x+c)} \sqrt{\pi} \cos \left(\frac{4(a+b \arcsin (d x+c))}{b}-\frac{4 a}{b}\right) \arcsin (d x+c)^{2} b^{2} \\
& \quad+2048 \sqrt{\frac{1}{b}} \sqrt{a+b \arcsin (d x+c)} \cos \left(\frac{2(a+b \arcsin (d x+c))}{b}-\frac{2 a}{b}\right) \sqrt{\pi} \arcsin (d x+c) a b \\
& -1280 \sqrt{\frac{1}{b}} \sqrt{a+b \arcsin (d x+c)} \sqrt{\pi} \sin \left(\frac{2(a+b \arcsin (d x+c))}{b}-\frac{2 a}{b}\right) \arcsin (d x+c) b^{2} \\
& -512 \sqrt{\frac{1}{b}} \sqrt{a+b \arcsin (d x+c)} \sqrt{\pi} \cos \left(\frac{4(a+b \arcsin (d x+c))}{b}-\frac{4 a}{b}\right) \arcsin (d x+c) a b \\
& \quad+160 \sqrt{\frac{1}{b}} \sqrt{a+b \arcsin (d x+c)} \sqrt{\pi} \sin \left(\frac{4(a+b \arcsin (d x+c))}{b}-\frac{4 a}{b}\right) \arcsin (d x+c) b^{2} \\
& \quad \\
& \quad-15 \pi b^{2} \sqrt{2} \cos \left(\frac{4 a}{b}\right) \operatorname{FresnelC}\left(\frac{2 \sqrt{2} \sqrt{a+b \arcsin (d x+c)})-15 \pi b^{2} \sqrt{2} \sin \left(\frac{4 a}{b}\right) \operatorname{FresnelS}\left(\frac{2 \sqrt{2} \sqrt{a+b \arcsin (d x+c)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b} \sqrt{\frac{1}{b}} b\right.}{}\right.
\end{aligned}
$$

$$
+1024 \sqrt{\frac{1}{b}} \sqrt{a+b \arcsin (d x+c)} \cos \left(\frac{2(a+b \arcsin (d x+c))}{b}-\frac{2 a}{b}\right) \sqrt{\pi} a^{2}-960 \sqrt{\frac{1}{b}} \sqrt{a+b \arcsin (d x+c)} \cos \left(\frac{2(a+b \arcsin (d x+c))}{b}\right.
$$

$$
\begin{aligned}
& \left.-\frac{2 a}{b}\right) \sqrt{\pi} b^{2}-1280 \sqrt{\frac{1}{b}} \sqrt{a+b \arcsin (d x+c)} \sqrt{\pi} \sin \left(\frac{2(a+b \arcsin (d x+c))}{b}-\frac{2 a}{b}\right) a b \\
& -256 \sqrt{\frac{1}{b}} \sqrt{a+b \arcsin (d x+c)} \sqrt{\pi} \cos \left(\frac{4(a+b \arcsin (d x+c))}{b}-\frac{4 a}{b}\right) a^{2} \\
& +60 \sqrt{\frac{1}{b}} \sqrt{a+b \arcsin (d x+c)} \sqrt{\pi} \cos \left(\frac{4(a+b \arcsin (d x+c))}{b}-\frac{4 a}{b}\right) b^{2}+160 \sqrt{\frac{1}{b}} \sqrt{a+b \arcsin (d x+c)} \sqrt{\pi} \sin \left(\frac{4(a+b \arcsin (d x+c))}{b}\right. \\
& \left.\left.-\frac{4 a}{b}\right) a b+480 \pi b^{2} \cos \left(\frac{2 a}{b}\right) \operatorname{FresnelC}\left(\frac{2 \sqrt{a+b \arcsin (d x+c)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right)+480 \pi b^{2} \sin \left(\frac{2 a}{b}\right) \operatorname{FresnelS}\left(\frac{2 \sqrt{a+b \arcsin (d x+c)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sqrt{\frac{1}{b}}\right)
\end{aligned}
$$

Problem 74: Result more than twice size of optimal antiderivative.

$$
\int \frac{d e x+c e}{(a+b \arcsin (d x+c))^{7 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 208 leaves, 11 steps):

$$
\begin{array}{r}
-\frac{4 e}{15 b^{2} d(a+b \arcsin (d x+c))^{3 / 2}}+\frac{8 e(d x+c)^{2}}{15 b^{2} d(a+b \arcsin (d x+c))^{3 / 2}}-\frac{32 e \cos \left(\frac{2 a}{b}\right) \operatorname{FresnelC}\left(\frac{2 \sqrt{a+b \arcsin (d x+c)}}{\sqrt{b} \sqrt{\pi}}\right) \sqrt{\pi}}{15 b^{7 / 2 d} d} \\
\left.-\frac{32 e \operatorname{FresnelS}\left(\frac{2 \sqrt{a+b \arcsin (d x+c)}}{\sqrt{b} \sqrt{\pi}}\right) \sin \left(\frac{2 a}{b}\right) \sqrt{\pi}}{15 b^{7 / 2} d}\right)-\frac{2 e(d x+c) \sqrt{1-(d x+c)^{2}}}{5 b d(a+b \arcsin (d x+c))^{5 / 2}}+\frac{32 e(d x+c) \sqrt{1-(d x+c)^{2}}}{15 b^{3} d \sqrt{a+b \arcsin (d x+c)}}
\end{array}
$$

Result(type 4, 582 leaves):

$$
\begin{aligned}
& -\frac{1}{15 d b^{3}(a+b \arcsin (d x+c))^{5} / 2}\left(e \left(32 \sqrt{a+b \arcsin (d x+c)} \sqrt{\frac{1}{b}} \cos \left(\frac{2 a}{b}\right) \text { FresnelC }\left(\frac{2 \sqrt{a+b \arcsin (d x+c)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sqrt{\pi} \arcsin (d x+c)^{2} b^{2}\right.\right. \\
& \quad+32 \sqrt{a+b \arcsin (d x+c)} \sqrt{\frac{1}{b}} \sin \left(\frac{2 a}{b}\right) \text { FresnelS }\left(\frac{2 \sqrt{a+b \arcsin (d x+c)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sqrt{\pi} \arcsin (d x+c)^{2} b^{2} \\
& +64 \sqrt{a+b \arcsin (d x+c)} \sqrt{\frac{1}{b}} \cos \left(\frac{2 a}{b}\right) \operatorname{FresnelC}\left(\frac{2 \sqrt{a+b \arcsin (d x+c)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sqrt{\pi} \arcsin (d x+c) a b
\end{aligned}
$$

$$
\begin{aligned}
& +64 \sqrt{a+b \arcsin (d x+c)} \sqrt{\frac{1}{b}} \sin \left(\frac{2 a}{b}\right) \text { FresnelS }\left(\frac{2 \sqrt{a+b \arcsin (d x+c)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sqrt{\pi} \arcsin (d x+c) a b \\
& +32 \sqrt{a+b \arcsin (d x+c)} \sqrt{\frac{1}{b}} \cos \left(\frac{2 a}{b}\right) \operatorname{FresnelC}\left(\frac{2 \sqrt{a+b \arcsin (d x+c)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sqrt{\pi} a^{2} \\
& +32 \sqrt{a+b \arcsin (d x+c)} \sqrt{\frac{1}{b}} \sin \left(\frac{2 a}{b}\right) \operatorname{FresnelS}\left(\frac{2 \sqrt{a+b \arcsin (d x+c)}}{\sqrt{\pi} \sqrt{\frac{1}{b}} b}\right) \sqrt{\pi} a^{2}-16 \sin \left(\frac{2(a+b \arcsin (d x+c))}{b}-\frac{2 a}{b}\right) \arcsin (d x \\
& +c)^{2} b^{2}+4 \cos \left(\frac{2(a+b \arcsin (d x+c))}{b}-\frac{2 a}{b}\right) \arcsin (d x+c) b^{2}-32 \sin \left(\frac{2(a+b \arcsin (d x+c))}{b}-\frac{2 a}{b}\right) \arcsin (d x+c) a b \\
& \left.\left.+4 \cos \left(\frac{2(a+b \arcsin (d x+c))}{b}-\frac{2 a}{b}\right) a b-16 \sin \left(\frac{2(a+b \arcsin (d x+c))}{b}-\frac{2 a}{b}\right) a^{2}+3 \sin \left(\frac{2(a+b \arcsin (d x+c))}{b}-\frac{2 a}{b}\right) b^{2}\right)\right)
\end{aligned}
$$

Problem 77: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{d e x+c e}(a+b \arcsin (d x+c)) \mathrm{d} x
$$

Optimal(type 4, 81 leaves, 5 steps):

$$
\frac{2(e(d x+c))^{3 / 2}(a+b \arcsin (d x+c))}{3 d e}-\frac{4 b \text { EllipticF }\left(\frac{\sqrt{e(d x+c)}}{\sqrt{e}}, \mathrm{I}\right) \sqrt{e}}{9 d}+\frac{4 b \sqrt{e(d x+c)} \sqrt{1-(d x+c)^{2}}}{9 d}
$$

Result(type 4, 171 leaves):
$\frac{1}{d e}\left(2\left(\frac{a(d e x+c e)^{3 / 2}}{3}+b\left(\frac{(d e x+c e)^{3 / 2} \arcsin \left(\frac{d e x+c e}{e}\right)}{3}\right)\right.\right.$

Problem 79: Unable to integrate problem.

$$
\int \frac{(a+b \arcsin (d x+c))^{2}}{\sqrt{d e x+c e}} \mathrm{~d} x
$$

Optimal(type 5, 106 leaves, 3 steps):
$-8 b(e(d x+c))^{3 / 2}(a+b \arcsin (d x+c))$ hypergeom $\left(\left[\frac{1}{2}, \frac{3}{4}\right],\left[\frac{7}{4}\right],(d x+c)^{2}\right)$
$3 d e^{2}$

$$
+\frac{16 b^{2}(e(d x+c))^{5 / 2} \text { HypergeometricPFQ }\left(\left[1, \frac{5}{4}, \frac{5}{4}\right],\left[\frac{7}{4}, \frac{9}{4}\right],(d x+c)^{2}\right)}{15 d e^{3}}+\frac{2(a+b \arcsin (d x+c))^{2} \sqrt{e(d x+c)}}{d e}
$$

Result(type 8, 25 leaves):

$$
\int \frac{(a+b \arcsin (d x+c))^{2}}{\sqrt{d e x+c e}} \mathrm{~d} x
$$

Problem 80: Unable to integrate problem.

$$
\int \frac{(a+b \arcsin (d x+c))^{2}}{(d e x+c e)^{9 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 106 leaves, 3 steps):
$-\frac{2(a+b \arcsin (d x+c))^{2}}{7 d e(e(d x+c))^{7 / 2}}-\frac{8 b(a+b \arcsin (d x+c)) \text { hypergeom }\left(\left[-\frac{5}{4}, \frac{1}{2}\right],\left[-\frac{1}{4}\right],(d x+c)^{2}\right)}{35 d e^{2}(e(d x+c))^{5 / 2}}$

$$
16 b^{2} \text { HypergeometricPFQ }\left(\left[-\frac{3}{4},-\frac{3}{4}, 1\right],\left[-\frac{1}{4}, \frac{1}{4}\right],(d x+c)^{2}\right)
$$

$$
105 d e^{3}(e(d x+c))^{3 / 2}
$$

Result(type 8, 25 leaves):

$$
\int \frac{(a+b \arcsin (d x+c))^{2}}{(d e x+c e)^{9 / 2}} \mathrm{~d} x
$$

Problem 89: Result more than twice size of optimal antiderivative.

$$
\int \frac{\arcsin (b x+a)}{\left(-b^{2} x^{2}-2 a b x-a^{2}+1\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 46 leaves, 3 steps):

$$
\frac{\ln \left(1-(b x+a)^{2}\right)}{2 b}+\frac{(b x+a) \arcsin (b x+a)}{b \sqrt{1-(b x+a)^{2}}}
$$

Result(type 3, 154 leaves):

$$
\begin{aligned}
& -\frac{1}{2 b\left(b^{2} x^{2}+2 a b x+a^{2}-1\right)}\left(-\ln \left(1-(b x+a)^{2}\right) x^{2} b^{2}+2 \sqrt{-b^{2} x^{2}-2 a b x-a^{2}+1} \arcsin (b x+a) x b-2 \ln \left(1-(b x+a)^{2}\right) x a b\right. \\
& \left.\quad+2 \sqrt{-b^{2} x^{2}-2 a b x-a^{2}+1} \arcsin (b x+a) a-\ln \left(1-(b x+a)^{2}\right) a^{2}+\ln \left(1-(b x+a)^{2}\right)\right)
\end{aligned}
$$

Problem 93: Unable to integrate problem.

$$
\int \frac{a+b \arcsin \left(c x^{2}\right)}{x} \mathrm{~d} x
$$

Optimal(type 4, 81 leaves, 7 steps):

$$
-\frac{\mathrm{I} b \arcsin \left(c x^{2}\right)^{2}}{4}+\frac{b \arcsin \left(c x^{2}\right) \ln \left(1-\left(\mathrm{I} c x^{2}+\sqrt{-c^{2} x^{4}+1}\right)^{2}\right)}{2}+a \ln (x)-\frac{\mathrm{I} b \operatorname{polylog}\left(2,\left(\mathrm{I} c x^{2}+\sqrt{-c^{2} x^{4}+1}\right)^{2}\right)}{4}
$$

Result(type 8, 16 leaves):

$$
\int \frac{a+b \arcsin \left(c x^{2}\right)}{x} \mathrm{~d} x
$$

Problem 102: Unable to integrate problem.

$$
\int x^{2}\left(a+b \arcsin \left(c x^{n}\right)\right) \mathrm{d} x
$$

Optimal(type 5, 60 leaves, 3 steps):

$$
\frac{x^{3}\left(a+b \arcsin \left(c x^{n}\right)\right)}{3}-\frac{b c n x^{3+n} \text { hypergeom }\left(\left[\frac{1}{2}, \frac{3+n}{2 n}\right],\left[\frac{3(1+n)}{2 n}\right], c^{2} x^{2 n}\right)}{3(3+n)}
$$

Result(type 8, 16 leaves):

$$
\int x^{2}\left(a+b \arcsin \left(c x^{n}\right)\right) \mathrm{d} x
$$

Problem 103: Unable to integrate problem.

$$
\int\left(a+b \arcsin \left(c x^{n}\right)\right) \mathrm{d} x
$$

Optimal(type 5, 56 leaves, 4 steps):

$$
a x+b x \arcsin \left(c x^{n}\right)-\frac{b c n x^{1+n} \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1+n}{2 n}\right],\left[\frac{3}{2}+\frac{1}{2 n}\right], c^{2} x^{2 n}\right)}{1+n}
$$

Result(type 8, 12 leaves):

$$
\int\left(a+b \arcsin \left(c x^{n}\right)\right) \mathrm{d} x
$$

Problem 108: Unable to integrate problem.

$$
\int\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{2} \mathrm{~d} x
$$

Optimal(type 3, 61 leaves, 2 steps):

$$
-8 b^{2} x+x\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{2}+\frac{4 b\left(a+b \arcsin \left(d x^{2}+1\right)\right) \sqrt{-d^{2} x^{4}-2 d x^{2}}}{d x}
$$

Result (type 8, 16 leaves):

$$
\int\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{2} \mathrm{~d} x
$$

Problem 109: Unable to integrate problem.

$$
\int \frac{1}{\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 197 leaves, 2 steps):
$\frac{x}{8 b^{2}\left(a+b \arcsin \left(d x^{2}+1\right)\right)}+\frac{x \operatorname{Ci}\left(\frac{a+b \arcsin \left(d x^{2}+1\right)}{2 b}\right)\left(\cos \left(\frac{a}{2 b}\right)-\sin \left(\frac{a}{2 b}\right)\right)}{16 b^{3}\left(\cos \left(\frac{\arcsin \left(d x^{2}+1\right)}{2}\right)-\sin \left(\frac{\arcsin \left(d x^{2}+1\right)}{2}\right)\right)}+\frac{x \operatorname{Si}\left(\frac{a+b \arcsin \left(d x^{2}+1\right)}{2 b}\right)\left(\cos \left(\frac{a}{2 b}\right)+\sin \left(\frac{a}{2 b}\right)\right)}{16 b^{3}\left(\cos \left(\frac{\arcsin \left(d x^{2}+1\right)}{2}\right)-\sin \left(\frac{\arcsin \left(d x^{2}+1\right)}{2}\right)\right)}$

$$
-\frac{\sqrt{-d^{2} x^{4}-2 d x^{2}}}{4 b d x\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{2}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{1}{\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{3}} \mathrm{~d} x
$$

Problem 110: Unable to integrate problem.

$$
\int \arcsin \left(x^{2}+1\right)^{2} \mathrm{~d} x
$$

Optimal(type 3, 38 leaves, 2 steps):

$$
-8 x+x \arcsin \left(x^{2}+1\right)^{2}+\frac{4 \arcsin \left(x^{2}+1\right) \sqrt{-x^{4}-2 x^{2}}}{x}
$$

Result(type 8, 10 leaves):

$$
\int \arcsin \left(x^{2}+1\right)^{2} \mathrm{~d} x
$$

Problem 111: Unable to integrate problem.

$$
\int\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{5 / 2} \mathrm{~d} x
$$

Optimal(type 4, 233 leaves, 2 steps):
$x\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{5 / 2}-\frac{15 x \text { FresnelS }\left(\frac{\sqrt{\frac{1}{b}} \sqrt{a+b \arcsin \left(d x^{2}+1\right)}}{\sqrt{\pi}}\right)\left(\cos \left(\frac{a}{2 b}\right)-\sin \left(\frac{a}{2 b}\right)\right) \sqrt{\pi}}{\left(\frac{1}{b}\right)^{5 / 2}\left(\cos \left(\frac{\arcsin \left(d x^{2}+1\right)}{2}\right)-\sin \left(\frac{\arcsin \left(d x^{2}+1\right)}{2}\right)\right)}$
$+\frac{15 x \text { FresnelC }\left(\frac{\sqrt{\frac{1}{b}} \sqrt{a+b \arcsin \left(d x^{2}+1\right)}}{\sqrt{\pi}}\right)\left(\cos \left(\frac{a}{2 b}\right)+\sin \left(\frac{a}{2 b}\right)\right) \sqrt{\pi}}{\left(\frac{1}{b}\right)^{5 / 2}\left(\cos \left(\frac{\arcsin \left(d x^{2}+1\right)}{2}\right)-\sin \left(\frac{\arcsin \left(d x^{2}+1\right)}{2}\right)\right)}+\frac{5 b\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{3 / 2} \sqrt{-d^{2} x^{4}-2 d x^{2}}}{d x}$
$-15 b^{2} x \sqrt{a+b \arcsin \left(d x^{2}+1\right)}$
Result(type 8, 16 leaves):

$$
\int\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{5 / 2} \mathrm{~d} x
$$

Problem 112: Unable to integrate problem.

$$
\int \frac{1}{\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 211 leaves, 2 steps):
$\frac{x \text { FresnelC }\left(\frac{\sqrt{a+b \arcsin \left(d x^{2}+1\right)}}{\sqrt{b} \sqrt{\pi}}\right)\left(\cos \left(\frac{a}{2 b}\right)-\sin \left(\frac{a}{2 b}\right)\right) \sqrt{\pi}}{3 b^{5 / 2}\left(\cos \left(\frac{\arcsin \left(d x^{2}+1\right)}{2}\right)-\sin \left(\frac{\arcsin \left(d x^{2}+1\right)}{2}\right)\right)}+\frac{x \operatorname{FresnelS}\left(\frac{\sqrt{a+b \arcsin \left(d x^{2}+1\right)}}{\sqrt{b} \sqrt{\pi}}\right)\left(\cos \left(\frac{a}{2 b}\right)+\sin \left(\frac{a}{2 b}\right)\right) \sqrt{\pi}}{3 b^{5 / 2}\left(\cos \left(\frac{\arcsin \left(d x^{2}+1\right)}{2}\right)-\sin \left(\frac{\arcsin \left(d x^{2}+1\right)}{2}\right)\right)}$

$$
-\frac{\sqrt{-d^{2} x^{4}-2 d x^{2}}}{3 b d x\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{3 / 2}}+\frac{x}{3 b^{2} \sqrt{a+b \arcsin \left(d x^{2}+1\right)}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{1}{\left(a+b \arcsin \left(d x^{2}+1\right)\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 113: Unable to integrate problem.

$$
\int\left(a+b \arcsin \left(d x^{2}-1\right)\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 209 leaves, 2 steps):
$x\left(a+b \arcsin \left(d x^{2}-1\right)\right)^{3 / 2}+\frac{3(-b)^{3 / 2} x \text { FresnelS }\left(\frac{\sqrt{a+b \arcsin \left(d x^{2}-1\right)}}{\sqrt{-b} \sqrt{\pi}}\right)\left(\cos \left(\frac{a}{2 b}\right)-\sin \left(\frac{a}{2 b}\right)\right) \sqrt{\pi}}{\cos \left(\frac{\arcsin \left(d x^{2}-1\right)}{2}\right)+\sin \left(\frac{\arcsin \left(d x^{2}-1\right)}{2}\right)}$
$+\frac{3(-b)^{3 / 2} x \text { FresnelC }\left(\frac{\sqrt{a+b \arcsin \left(d x^{2}-1\right)}}{\sqrt{-b} \sqrt{\pi}}\right)\left(\cos \left(\frac{a}{2 b}\right)+\sin \left(\frac{a}{2 b}\right)\right) \sqrt{\pi}}{\cos \left(\frac{\arcsin \left(d x^{2}-1\right)}{2}\right)+\sin \left(\frac{\arcsin \left(d x^{2}-1\right)}{2}\right)}+\frac{3 b \sqrt{-d^{2} x^{4}+2 d x^{2}} \sqrt{a+b \arcsin \left(d x^{2}-1\right)}}{d x}$
Result (type 8, 16 leaves):

$$
\int\left(a+b \arcsin \left(d x^{2}-1\right)\right)^{3 / 2} \mathrm{~d} x
$$

Problem 114: Unable to integrate problem.

$$
\int \frac{1}{\left(a+b \arcsin \left(d x^{2}-1\right)\right)^{7 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 265 leaves, 2 steps):
$\frac{x}{15 b^{2}\left(a+b \arcsin \left(d x^{2}-1\right)\right)^{3 / 2}}+\frac{\left(-\frac{1}{b}\right)^{7 / 2} x \operatorname{FresnelC}\left(\frac{\sqrt{-\frac{1}{b}} \sqrt{a+b \arcsin \left(d x^{2}-1\right)}}{\sqrt{\pi}}\right)\left(\cos \left(\frac{a}{2 b}\right)-\sin \left(\frac{a}{2 b}\right)\right) \sqrt{\pi}}{15\left(\cos \left(\frac{\arcsin \left(d x^{2}-1\right)}{2}\right)+\sin \left(\frac{\arcsin \left(d x^{2}-1\right)}{2}\right)\right)}$

$$
-\frac{\left(-\frac{1}{b}\right)^{7 / 2} x \text { FresnelS }\left(\frac{\sqrt{-\frac{1}{b}} \sqrt{a+b \arcsin \left(d x^{2}-1\right)}}{\sqrt{\pi}}\right)\left(\cos \left(\frac{a}{2 b}\right)+\sin \left(\frac{a}{2 b}\right)\right) \sqrt{\pi}}{15\left(\cos \left(\frac{\arcsin \left(d x^{2}-1\right)}{2}\right)+\sin \left(\frac{\arcsin \left(d x^{2}-1\right)}{2}\right)\right)}-\frac{\sqrt{-d^{2} x^{4}+2 d x^{2}}}{5 b d x\left(a+b \arcsin \left(d x^{2}-1\right)\right)^{5 / 2}}
$$

$$
+\frac{\sqrt{-d^{2} x^{4}+2 d x^{2}}}{15 b^{3} d x \sqrt{a+b \arcsin \left(d x^{2}-1\right)}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{1}{\left(a+b \arcsin \left(d x^{2}-1\right)\right)^{7 / 2}} \mathrm{~d} x
$$

$$
\int \frac{\left(a+b \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right)^{3}}{-c^{2} x^{2}+1} \mathrm{~d} x
$$

Optimal(type 4, 300 leaves, 8 steps):

$$
\begin{aligned}
& \frac{\mathrm{I}\left(a+b \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right)^{4}}{4 b c}-\frac{\left(a+b \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right)^{3} \ln \left(1-\left(\frac{I \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)^{2}\right)}{c} \\
& +\frac{3 \mathrm{I} b\left(a+b \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right)^{2} \operatorname{polylog}\left(2,\left(\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)^{2}\right)}{2 c} \\
& -\frac{3 b^{2}\left(a+b \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right) \operatorname{polylog}\left(3,\left(\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)^{2}\right)}{2 c}-\frac{3 \mathrm{I} b^{3} \operatorname{polylog}\left(4,\left(\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)^{2}\right)}{4 c}
\end{aligned}
$$

Result(type 4, 1231 leaves):

$$
\begin{aligned}
& -\frac{a^{3} \ln (c x-1)}{2 c}+\frac{a^{3} \ln (c x+1)}{2 c}-\frac{6 \mathrm{I} b^{3} \operatorname{polylog}\left(4, \frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c} \\
& -\frac{b^{3} \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{3} \ln \left(1-\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}-\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c}+\frac{3 \mathrm{I} b^{3} \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2} \operatorname{polylog}\left(2,-\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}-\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c} \\
& -\underline{6 b^{3} \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \operatorname{polylog}\left(3, \frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)} \\
& +\frac{6 \mathrm{I} a b^{2} \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \operatorname{polylog}\left(2,-\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}-\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c}-\frac{b^{3} \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{3} \ln \left(1+\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c} \\
& +\frac{3 \mathrm{I} a^{2} b \operatorname{polylog}\left(2,-\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}-\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c}-\frac{6 b^{3} \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \operatorname{polylog}\left(3,-\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}-\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c} \\
& +\frac{3 \mathrm{I} a^{2} b \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2}}{2 c}+\frac{3 \mathrm{I} a^{2} b \text { polylog }\left(2, \frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{3 a b^{2} \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2} \ln \left(1-\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}-\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c}+\frac{\mathrm{I} a b^{2} \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{3}}{c} \\
& \left.-\frac{6 a b^{2} \text { polylog }\left(3, \frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)-\left(3 a b^{2} \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2} \ln \left(1+\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)\right.}{(}\right) \\
& c \quad-\quad c \\
& +\frac{3 \mathrm{I} b^{3} \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c}-\frac{6 a b^{2} \operatorname{polylog}\left(3,-\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}-\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c} \\
& +\frac{\mathrm{I} b^{3} \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{4}}{4 c}-\frac{3 a^{2} b \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \ln \left(1-\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}-\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c} \\
& -\frac{6 \mathrm{I} b^{3} \operatorname{polylog}\left(4,-\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}-\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c}-\frac{3 a^{2} b \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \ln \left(1+\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c} \\
& +\frac{6 \mathrm{I} a b^{2} \arcsin \left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \operatorname{polylog}\left(2, \frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}+\sqrt{1-\frac{-c x+1}{c x+1}}\right)}{c}
\end{aligned}
$$

Problem 119: Unable to integrate problem.

$$
\int \mathrm{e}^{\arcsin (a x)} x^{3} \mathrm{~d} x
$$

Optimal(type 3, 69 leaves, 6 steps):

$$
-\frac{\mathrm{e}^{\arcsin (a x)} \cos (2 \arcsin (a x))}{10 a^{4}}+\frac{\mathrm{e}^{\arcsin (a x)} \cos (4 \arcsin (a x))}{34 a^{4}}+\frac{\mathrm{e}^{\arcsin (a x)} \sin (2 \arcsin (a x))}{20 a^{4}}-\frac{\mathrm{e}^{\arcsin (a x)} \sin (4 \arcsin (a x))}{136 a^{4}}
$$

Result(type 8, 11 leaves):

$$
\int \mathrm{e}^{\arcsin (a x)} x^{3} \mathrm{~d} x
$$

Problem 120: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{\arcsin (a x)}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 5, 89 leaves, 6 steps):
$(1-\mathrm{I}) a \mathrm{e}^{(1+\mathrm{I}) \arcsin (a x)}$ hypergeom $\left(\left[1, \frac{1}{2}-\frac{\mathrm{I}}{2}\right],\left[\frac{3}{2}-\frac{\mathrm{I}}{2}\right],\left(\mathrm{I} a x+\sqrt{-a^{2} x^{2}+1}\right)^{2}\right)+(-2+2 \mathrm{I}) a \mathrm{e}^{(1+\mathrm{I}) \arcsin (a x)} \operatorname{hypergeom}\left(\left[2, \frac{1}{2}-\frac{\mathrm{I}}{2}\right],\left[\frac{3}{2}-\frac{\mathrm{I}}{2}\right]\right.$,

$$
\left.\left(\mathrm{I} a x+\sqrt{-a^{2} x^{2}+1}\right)^{2}\right)
$$

Result(type 8, 11 leaves):

$$
\int \frac{\mathrm{e}^{\arcsin (a x)}}{x^{2}} \mathrm{~d} x
$$

Problem 121: Unable to integrate problem.

$$
\int \mathrm{e}^{\arcsin (a x)^{2}} x \mathrm{~d} x
$$

Optimal(type 4, 37 leaves, 8 steps):

$$
\frac{\mathrm{I} E \operatorname{erfi}(-\mathrm{I}+\arcsin (a x)) \sqrt{\pi}}{8 a^{2}}-\frac{\mathrm{I} E \operatorname{erfi}(\mathrm{I}+\arcsin (a x)) \sqrt{\pi}}{8 a^{2}}
$$

Result(type 8, 11 leaves):

$$
\int \mathrm{e}^{\arcsin (a x)^{2}} x \mathrm{~d} x
$$

Problem 122: Unable to integrate problem.

$$
\int \mathrm{e}^{\arcsin (b x+a)} x^{2} \mathrm{~d} x
$$

Optimal(type 3, 177 leaves, 13 steps):
$\frac{\mathrm{e}^{\arcsin (b x+a)}(b x+a)}{8 b^{3}}+\frac{a^{2} \mathrm{e}^{\arcsin (b x+a)}(b x+a)}{2 b^{3}}+\frac{2 a \mathrm{e}^{\arcsin (b x+a)} \cos (2 \arcsin (b x+a))}{5 b^{3}}-\frac{\mathrm{e}^{\arcsin (b x+a)} \cos (3 \arcsin (b x+a))}{40 b^{3}}$

$$
-\frac{a \mathrm{e}^{\arcsin (b x+a)} \sin (2 \arcsin (b x+a))}{5 b^{3}}-\frac{3 \mathrm{e}^{\arcsin (b x+a)} \sin (3 \arcsin (b x+a))}{40 b^{3}}+\frac{\mathrm{e}^{\arcsin (b x+a)} \sqrt{1-(b x+a)^{2}}}{8 b^{3}}+\frac{a^{2} \mathrm{e}^{\arcsin (b x+a)} \sqrt{1-(b x+a)^{2}}}{2 b^{3}}
$$

Result(type 8, 13 leaves):

$$
\int \mathrm{e}^{\arcsin (b x+a)} x^{2} \mathrm{~d} x
$$

Problem 123: Unable to integrate problem.

$$
\int \mathrm{e}^{\arcsin (b x+a)} x \mathrm{~d} x
$$

Optimal(type 3, 87 leaves, 9 steps):

$$
-\frac{a \mathrm{e}^{\arcsin (b x+a)}(b x+a)}{2 b^{2}}-\frac{\mathrm{e}^{\arcsin (b x+a)} \cos (2 \arcsin (b x+a))}{5 b^{2}}+\frac{\mathrm{e}^{\arcsin (b x+a)} \sin (2 \arcsin (b x+a))}{10 b^{2}}-\frac{a \mathrm{e}^{\arcsin (b x+a)} \sqrt{1-(b x+a)^{2}}}{2 b^{2}}
$$

Result(type 8, 11 leaves):

Problem 124: Unable to integrate problem.

$$
\int \mathrm{e}^{\arcsin (b x+a)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 41 leaves, 7 steps):

$$
\frac{\mathrm{e}^{\frac{1}{4}} \operatorname{erfi}\left(-\frac{\mathrm{I}}{2}+\arcsin (b x+a)\right) \sqrt{\pi}}{4 b}+\frac{\mathrm{e}^{\frac{1}{4}} \operatorname{erfi}\left(\frac{\mathrm{I}}{2}+\arcsin (b x+a)\right) \sqrt{\pi}}{4 b}
$$

Result(type 8, 11 leaves):

$$
\int \mathrm{e}^{\arcsin (b x+a)^{2}} \mathrm{~d} x
$$

Problem 126: Unable to integrate problem.

$$
\int \mathrm{e}^{\arcsin (a x)}\left(-a^{2} x^{2}+1\right)^{5 / 2} \mathrm{~d} x
$$

Optimal(type 3, 135 leaves, 7 steps):
$\frac{144 \mathrm{e}^{\arcsin (a x)}}{629 a}+\frac{72 \mathrm{e}^{\arcsin (a x)}\left(-a^{2} x^{2}+1\right)}{629 a}+\frac{120 \mathrm{e}^{\arcsin (a x)} x\left(-a^{2} x^{2}+1\right)^{3 / 2}}{629}+\frac{30 \mathrm{e}^{\arcsin (a x)}\left(-a^{2} x^{2}+1\right)^{2}}{629 a}+\frac{6 \mathrm{e}^{\arcsin (a x)} x\left(-a^{2} x^{2}+1\right)^{5 / 2}}{37}$

$$
+\frac{\mathrm{e}^{\arcsin (a x)}\left(-a^{2} x^{2}+1\right)^{3}}{37 a}+\frac{144 \mathrm{e}^{\arcsin (a x)} x \sqrt{-a^{2} x^{2}+1}}{629}
$$

Result(type 8, 20 leaves):

$$
\int \mathrm{e}^{\arcsin (a x)}\left(-a^{2} x^{2}+1\right)^{5 / 2} \mathrm{~d} x
$$

Problem 127: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{\arcsin (a x)}}{\left(-a^{2} x^{2}+1\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 48 leaves, 4 steps):

$$
\left(\frac{4}{5}-\frac{8 \mathrm{I}}{5}\right) \mathrm{e}^{(1+2 \mathrm{I}) \arcsin (a x)} \text { hypergeom }\left(\left[2,1-\frac{\mathrm{I}}{2}\right],\left[2-\frac{\mathrm{I}}{2}\right],-\left(\mathrm{I} a x+\sqrt{-a^{2} x^{2}+1}\right)^{2}\right)
$$

Result(type 8, 20 leaves):

$$
\int \frac{\mathrm{e}^{\arcsin (a x)}}{\left(-a^{2} x^{2}+1\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 128: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{\arcsin (a x)}}{\left(-a^{2} x^{2}+1\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 91 leaves, 5 steps):

$$
\frac{\mathrm{e}^{\arcsin (a x)} x}{3\left(-a^{2} x^{2}+1\right)^{3 / 2}}-\frac{\mathrm{e}^{\arcsin (a x)}}{6 a\left(-a^{2} x^{2}+1\right)}+\frac{\left(\frac{2}{3}-\frac{4 \mathrm{I}}{3}\right) \mathrm{e}^{(1+2 \mathrm{I}) \arcsin (a x)} \operatorname{hypergeom}\left(\left[2,1-\frac{\mathrm{I}}{2}\right],\left[2-\frac{\mathrm{I}}{2}\right],-\left(\mathrm{I} a x+\sqrt{-a^{2} x^{2}+1}\right)^{2}\right)}{a}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\mathrm{e}^{\arcsin (a x)}}{\left(-a^{2} x^{2}+1\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 129: Unable to integrate problem.

$$
\int \frac{\arcsin \left(\sqrt{b x^{2}+1}\right)^{n}}{\sqrt{b x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 3, 34 leaves, 2 steps):

$$
\frac{\arcsin \left(\sqrt{b x^{2}+1}\right)^{1+n} \sqrt{-b x^{2}}}{b(1+n) x}
$$

Result(type 8, 24 leaves):

$$
\int \frac{\arcsin \left(\sqrt{b x^{2}+1}\right)^{n}}{\sqrt{b x^{2}+1}} \mathrm{~d} x
$$

Problem 130: Unable to integrate problem.

$$
\int \frac{1}{\arcsin \left(\sqrt{b x^{2}+1}\right) \sqrt{b x^{2}+1}} \mathrm{~d} x
$$

$$
\frac{\ln \left(\arcsin \left(\sqrt{b x^{2}+1}\right)\right) \sqrt{-b x^{2}}}{b x}
$$

Result(type 8, 24 leaves):

$$
\int \frac{1}{\arcsin \left(\sqrt{b x^{2}+1}\right) \sqrt{b x^{2}+1}} \mathrm{~d} x
$$

383 integration problems

A - 234 optimal antiderivatives
B - 78 more than twice size of optimal antiderivatives
C - 0 unnecessarily complex antiderivatives
D - 71 unable to integrate problems
E - O integration timeouts

[^0]: Problem 18: Result more than twice size of optimal antiderivative.

